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Abstract 

One of the techniques used for breast radiation therapy employs two electronically 

compensated tangent fields. This technique has been shown to minimize irradiation of 

the surrounding pulmonary and cardiac tissue, while improving the homogeneity of the 

delivered dose within the breast volume. Much work has been carried out to correlate the 

size and shape of the breast, defined by breast radius and separation, with the amount 

of tissue compensation needed to deliver the most homogenous dose distribution. These 

methods so far have assumed either a single or three radius and separation 

measurements throughout the breast volume (called the one- and three-region breast 

model), instead of accounting for the variation in radius and separation in the cranio-

caudal direction. We developed a semi-supervised algorithm to determine the size and 

shape of the breast at each axial location using the pre-treatment CT-simulation image 

data, and correlate it to the optimal level of tissue compensation. Ten treatment plans 

generated in this manner were compared with the original medical dosimetrist plans for 

the dose homogeneity throughout the breast volume and for conformity to institutional 

dose constraints. Additional comparisons were with plans generated using the one- and 

three-region breast models. 

We measured statistically non-inferior dose homogeneity from plans generated from our 

automated framework compared with the medical dosimetrist plans over the collected 

courses. Additionally, our framework’s plans improved on dose homogeneity compared 

with plans generated using the one- and three-region breast model, indicating that 

considering the variation in the breast radius and separation in the cranio-caudal direction 

improves the treatment plans. Compared with the medical dosimetrist plans, our 
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automated algorithm requires much less user input and generates plans in an average of 

20 seconds compared with the 30 minutes of full attention it can take a dosimetrist.  

This work indicates the potential clinical utility for an automated technique for the 

generation of more homogenous breast electronic compensation treatment plans 

compared with a one- or three-region breast model. We envision this process attaining a 

more consistently homogenous starting point for further optimization by the medical 

dosimetrist compared with the current standard starting point one-region breast model. 

 

 

 

 

 

 

 

 

 

 

  



www.manaraa.com

1 | P a g e  
 

Chapter 1: Introduction of Basic Concepts 

1.1 – Breast Cancer 

1.1.1 – Incidence and Statistics 

reast cancer is a problem of great clinical significance to women in the United 

States. According to the American Cancer Society and National Cancer 

Institute1, about 1 in 8 U.S. women will develop invasive breast cancer over 

the course of her lifetime2. In 2020, an estimated 276,480 new cases of invasive breast 

cancer (Figure 1) and 48,530 new cases of non-invasive breast cancer are expected to 

be diagnosed. 42,170 women in the U.S. are 

expected to die in 2020 from breast cancer, 

and for women in the U.S., breast cancer 

death rates are higher than those for any 

other cancer save for lung cancer (Figure 1). 

As of January of 2020, there are more than 

3.5 million women with a history of breast 

cancer in the U.S., including those women 

currently being treated and those who have 

completed treatment. Save for skin cancer, 

breast cancer will be the most commonly 

diagnosed cancer among American women. 

In 2020, it is estimated that 30% of newly diagnosed cancers in women will be breast 

cancer. All of this being said, the 5- and 10-year relative survival rates for women with 

B 

Figure 1: 2020 estimates of leading sites of new 
invasive cancer and deaths for American women. 
Breast cancer statistics highlighted. Statistics 
from the American Cancer Society. 
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invasive breast cancer are 91% and 84% respectively. If the cancer is caught at a 

localized stage before it spreads to the lymphatic system, the 5-year survival rate is 99%. 

1.1.2 – Detection 

 As mentioned in the previous subsection, detecting breast cancer in its localized stage 

is essential to maximize the patient’s survival rate. Image-based screening for breast 

cancer using mammography is widespread. It is estimated that 65.3% of women aged 40 

or older have undergone a mammogram since the year 20183. Mammography is a low-

dose planar x-ray imaging procedure that can visualize early signs of breast cancer prior 

to the onset of symptoms. Traditionally, this was a modality which used radiographic film 

for image visualization, recent times have brought about digital mammography4. It is 

undeniable that mammography aids in the early detection of breast cancer, but questions 

persist regarding the proper screening schedules and the appropriate age at which 

women should start regular screening5. The American Cancer Society recommends 

women begin regular mammographic screening starting at age 45, but this can depend 

on other risk factors such as family history. Concerns of radiation-induced breast cancer 

due to the dose delivered from years’ worth of mammograms are reported6, as well as 

the cost and potential patient discomfort during the mammography procedure are reasons 

many women resist regular mammography screening. These concerns have led to much 

research regarding other methods for breast cancer screening such as with magnetic 

resonance imaging (MRI)7 or ultrasound8. Additionally, mammography is limited in that all 

of the volumetric information is integrated over the axial direction, which may inhibit 

proper appreciation of any early signs of breast cancer. These concerns have led to the 

development of breast tomosynthesis techniques, which can acquire volumetric 
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information regarding the breast9. This increase in information available to clinicians has 

been reported to aid in the early detection of breast cancer10. 

Following a positive finding from initial screening, a woman will typically undergo a 

surgical biopsy procedure, where a tissue sample from the breast will be extracted and 

sent for further investigation11 to determine the staging and subtype of the disease. 

Following this, if the positive disease state is confirmed, the treatment course will be 

determined depending on the disease stage and cancer subtype. 

1.1.3 – Treatment Options 

As mentioned in the previous subsection, treatments for breast cancer will depend on the 

specific tumor subtype categorized according to the presence of estrogen or 

progesterone receptor expressions2. Typically, there will be some combination of 

hormone therapy along with the delivery of chemotherapy drugs to the tumor site for 

patients with the receptor-positive tumors. These chemotherapy drugs are preferentially 

taken in by the rapidly dividing tumor cells, leading to their death via RNA or DNA damage 

interrupting the cell division process12. Targeted antibodies are also being used13 for a 

more precise and accurate delivery of the treatment to the tumor, which may reduce some 

of the associated toxicity from chemotherapy14. For patients with receptor negative 

tumors, which is reported to have a poorer prognosis compared with the receptor positive 

subtypes15, a lumpectomy or even total mastectomy may be considered. In the case of 

surgical removal of some or the entire breast, it is typically performed in-conjunction with 

post-surgical radiation therapy16, either using an external x-ray beam or with implantation 

of radiation-delivery devices in the breast (brachytherapy) near the site. This is done to 

ensure that tumor cells that may have extended to surrounding tissue are killed such that 
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the chance of disease recurrence is reduced. This killing action of the radiation source is 

due to either direct damage to the tumor cell’s DNA or other molecules, or indirect damage 

following the production of hydroxyl free-radicals17. It is important to note that treatments 

such as surgery and radiation therapy are called local treatments, compared with 

chemotherapy, which is called a systemic treatment. Surgery and radiation therapy target 

one location of the body (ignoring potential side effects of the therapies), whereas 

chemotherapy drugs will travel throughout the body and affect cells far from the primary 

tumor. 

1.2 – Radiation Therapy for Breast Cancer 

1.2.1 – Brachytherapy 

Brachytherapy is the delivery of radiation to a target with an implanted radiation source, 

either temporary or permanent. Brachytherapy techniques for breast cancer treatment 

typically use a high-dose rate radiation source18 that is temporarily implanted to the target 

site, then retracted following delivery of the prescription dose. The use of breast 

brachytherapy following either a lumpectomy or a mastectomy has increased in recent 

years19 as an alternative treatment method to whole-breast irradiation with an external 

radiation beam.  Compared with whole-breast irradiation, it is reported that brachytherapy 

leads to less breast tissue irradiation and requires a shorter treatment course20. This 

smaller more targeted treatment volume may lead to insufficient residual tumor killing, 

causing more disease recurrence potentially necessitating further surgical intervention 

such as a mastectomy21. It is reported that in specific cohorts, brachytherapy compared 

with whole-breast external beam irradiation results in worse breast preservation and 

increased complications, but no difference in patient survival19. The associated risks with 
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the increase in brachytherapy post-procedural complications have not yet been 

quantified. 

1.2.2 – External Beam Whole Breast Irradiation 

It is reported that women who undergo lumpectomy followed by whole-breast external 

beam irradiation for breast cancer treatment have a reduced risk for disease recurrence 

which may prevent the need for an eventual mastectomy22-25. This treatment modality 

delivers dose with an external x-ray beam, generated in the present day with a linear 

accelerator (LINAC). External beam radiotherapy for breast cancer treatment is carried 

out with two x-ray fields in the mega-volt peak (MV) beam energy range. These treatments 

are fractionated, meaning that the prescription dose is not given all at once – rather, daily 

radiation doses are administered which sum to the prescription dose which is typically 

around 40 Gy. These doses are typically administered over the course of more than a 

month. Without this fractionation scheme, the toxicity of the administered radiation to 

healthy tissue would be too great26,27 and would outweigh any treatment benefits. This 

fractionation schedule is the topic of much current research, and there are studies which 

point to what might be the most optimal one defined by rate of disease recurrence and 

radiation-induced morbidity28-30. In many ways, a quicker, “hypofractionated” radiation-

delivery schedule might be important from the standpoint of patient convenience.  

Hypofractionation is the delivery of the typical 40 Gy prescription dose with a larger daily 

dose to the target, administered over a shorter amount of time when compared with a 

normally-fractionated schedule. Radiobiological models suggest that such a delivery 

scheme could be just as effective31 for treatment, while being more convenient for the 

patient when compared with a normally-fractionated radiation delivery schedule. This is 
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important, as it is reported that 30% of North American women forgo the radiation therapy 

following lumpectomy due, in part, because of the time and cost of the therapy32.  

1.3 – External Beam Radiation Therapy Breast Cancer Treatment Concerns 

1.3.1 – Dose to Healthy Tissue 

Similar to all applications of radiation therapy, the healthy tissue near the target site must 

be protected. The dose delivered to these healthy structures must be minimized to reduce 

the chances of radiotherapy-induced side-effects such as secondary cancers33, and 

specific to cancer treatments near the heart, radiation-induced cardiomyopathy34. These 

concerns have a large clinical footprint, as 

120,000 American women with breast cancer are 

treated annually with external beam 

radiotherapy35-37. To maximize the coverage of 

the treatment volume, while minimizing the 

potential negative impact on the healthy 

surrounding tissue, two tangentially opposed 

fields (180° apart, Figure 2) are used for radiation 

dose delivery. This type of beam geometry maximizes the radiation field coverage to 

irradiate the whole breast, while minimizing the dose to the ipsilateral lung and heart such 

that some of the radiation-associated toxicity of this treatment modality may be reduced. 

This is an important concept, as it is reported that women treated for breast cancer with 

external beam radiation therapy have a higher incidence of coronary artery disease and 

the previously mentioned myocardial infarction38-40. This two-field opposed tangential 

approach provides good local tumor control with a <1% local recurrence rate41. 

Figure 2: Axial CT-simulation slice with 
exemplification of tangentially opposed fields 
used for breast cancer treatment 
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1.3.2 – Homogenous Dose Delivery 

An additional goal of external beam radiation therapy is to homogenously deliver the 

prescription dose throughout the entire treatment volume42. The standard two tangentially 

opposed field approach does not necessarily provide this43. It is challenging to achieve a 

homogenous delivery of the prescription dose throughout the entire breast volume due to 

the shape of the breast44,45. Organs such as the breast and the nose that have thinner 

and thicker regions due to curvature are often difficult locations to deliver a homogenous 

radiation dose. Attempting to achieve at least 95% of prescription dose in the treatment 

volume as is a standard institutional dose constraint will often lead to hotspots in the 

breast volume which may result in overdosing the breast, often measured as a dose some 

percentage over 100% of the prescription dose46 depending on the specific institutional 

constraints. Improvement in the dose homogeneity has been shown to reduce the onset 

of adverse effects such as acute radiation toxicity and poor cosmetic outcomes, especially 

in women with large breast sizes47,48. Additionally, as more plans shift towards a 

hypofractionated approach, dose homogeneity becomes an even more important49 

consideration. 

1.4 – Solutions to Improve Dose Homogeneity 

1.4.1 – Intensity Modulation with Physical Wedge Filters 
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Wedge filters are used in external beam radiation therapy for different organs to improve 

the homogeneity of the delivered dose throughout the target volume50. The wedge filter 

causes a modulation in intensity across the beam resulting in a modification in   the 

isodose lines, where the thicker end of the wedge causes a reduction in beam intensity 

beneath it (Figure 3)51. This can be desired in organs 

such as the breast, where the thicker portion of the 

wedge can be placed above the anterior portion of the 

breast, which is thinner than breast regions posterior. 

A wedge can prevent overdosing of these thinner 

regions and improve the homogeneity of the dose 

delivery throughout the entire breast treatment volume.  

Wedge filters are made of a material highly attenuating 

to x-rays such as lead or steel. The amount of tilt that 

the wedge will induce in the isodose curves is dependent on the slope of the wedge filter; 

a higher sloping filter will lead to more isodose line tilt, and vice-versa for a less sloping 

filter. The wedge that is selected is task- and patient-specific. In recent years, radiation 

beam intensity modulation with physical compensators including physical wedges have 

been superseded by dynamic multileaf collimators (MLC)52-54 to go along with intensity-

modulated radiation therapy (IMRT). 

1.4.2 – Intensity Modulation with MLC 

The introduction of MLC beam intensity modulation to clinical practice has greatly 

improved the ability of the external-beam radiation therapy treatment planner to maximize 

the coverage of the treatment volume while minimizing the dose to peripheral healthy 

Figure 3: Isodose curves tilted to 
thinner edge of wedge filter.  
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tissues. Both of these factors lead to 

improved dose homogeneity within the 

treatment volume when compared with 

classical beam modulation techniques such 

as physical wedges, or treatments using no 

intensity modulation55. The MLC achieves 

this intensity modulation with the motion of 

individual tungsten “fingers” (Figure 4)56 that move in and out of the radiation beam to 

shape the treatment area and modulate the fluence of the delivered radiation with time. 

The resolution of this intensity modulation is dependent on the spatial width of each of the 

collimator fingers, as well as how quickly they can be moved in and out of the beam. The 

MLC sits within the LINAC head and does not require any manual insertion or removal 

from treatment to treatment. 

A specific approach to utilization of the power of IMRT in the context of breast cancer is 

electronic compensation of the tangential opposed radiation fields57-59. This technique 

uses dynamic motion of the MLC during the treatment to vary the beam fluence to more-

homogenously deliver dose to the irregular breast volume. This irregular compensation 

surface can account for variation in breast thickness in both the anterior-posterior 

direction and cranio-caudal direction60, which is a strength of this technique as the breast 

organ has much variation in those directions making it difficult for classical methods to 

deliver a homogenous dose distribution. The compensation surface is defined with a 

transmission penetration depth (TPD), which is the point along every ray within the x-ray 

field that the tissue compensation occurs. A TPD of 50% indicates that the compensation 

Figure 4: Conformal shaping of the delivered beam 
with the position of the multileaf collimator (MLC) 
fingers. Intensity modulation is achieved with 
dynamic motion of the MLC. 
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surface is at the halfway point through the breast at 

each ray in the x-ray field. If the TPD is reduced, the 

compensation surface is moved closer to the 

radiation entry breast surface. If the TPD is 

increased, the opposite is true. This concept is 

shown in Figure 5. The homogeneity of the delivered 

plan is improved using electronic compensation 

through careful selection of the TPD.  

Forward planning is conventionally used for 

electronic compensation breast cancer treatments, 

where a dose prescription and constraints are set, and a planner attempts to manually 

combine different beam configurations and MLC motion to suitably match the prescription 

and meet the institutional constraints with an iterative process. This is the reverse of 

inverse planning, where the dose prescription and constraints are set, and an algorithm 

is optimized such that the prescription and constraints are met through the selection of 

beam combinations and MLC motion. Inverse planning can be computationally intensive, 

and until recently has not made its way into clinical practice due to hardware restrictions61, 

although that is starting to change in recent years with the advent of parallel computing 

and cheaper processing power62. 

A second consideration to these treatments is the x-ray beam energy selected for the 

tangentially opposed fields. At Roswell Park Comprehensive Cancer Center, either solely 

a 6 MV x-ray beam or a combination of a 6 MV and a 23 MV beam fractionally weighted 

is used depending on the size of the breast. The higher beam energy is sometimes 

Figure 5: Outline of axial slice of 
asymmetric breast (black) with irregular 
compensation surface (green) for 
diverging field with beamlets A and B 
(red) detailing (top) TPD of 35% and 
(bottom) TPD of 50%. 

TPD = 35% 

TPD = 50% 
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employed in cases of large breasts to better deliver the dose to the deeper portions of the 

breast without overdosing the surrounding tissue. 

1.4.3 – Shortfalls of Current Methods 

As mentioned in a previous subsection, electronic compensation is currently forward 

planned, typically by a medical dosimetrist. This means that the dosimetrist adjusts 

certain parameters manually in an iterative process until the dose prescription is met and 

any dose constraints are satisfied. Dose constraints that are typically set include minimum 

and maximum percentage of prescription dose to avoid radiation hot and cold spots in the 

treatment volume, as well as maximum radiation dose delivered to peripheral tissue and 

critical organs such as the ipsilateral lung and the heart. The TPD is one of the parameters 

that is tuned to adjust the delivered radiation fields. Clinically, the TPD is initialized based 

on prior knowledge of the treatment planner, and modified iteratively. The dose profiles 

are modified manually to reduce x-ray fluence in regions of hotspots, and increase x-ray 

fluence in regions of cold spots. This iterative process can be a time-consuming one, 

where meeting the entire plan constraints can take the dosimetrist tens of minutes, or 

even longer to achieve. Additionally, there can be large variability between different 

Figure 6: Flowchart exemplifying the current planning process for electronic compensation forward 
treatment planning. This forward planning is an iterative process that requires manual editing of the fluence 
map to bring the plans within institutional dose constraints. 
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treatment planners based on their experience and skill. This process may be contributing 

to some of the dosimetrist burnout reported in the literature63. The current clinical workflow 

is exemplified by the flowchart shown in Figure 6. 

Work has been published which has attempted to automate certain portions of the 

electronic compensation forward planning, by correlating the size and shape of the breast 

to the TPD which yielded the most homogenous dose delivery. Friend and authors 

reported the use of a constant TPD rule depending of the breast separation, TPD 40% if 

the separation is greater than 24 cm, TPD of 50% otherwise64. Emmens and James 

reported the use of smaller TPD for breasts with larger maximum separation producing a 

more homogenous dose distribution, while also indicating that the entire breast volume 

should be taken into account to achieve the most homogenous dose distribution65. These 

works are an improvement over the manual iterations needed with the current clinical 

workflow, in that the treatment plans should satisfy the dose constraints quicker and with 

less manual input by the medical dosimetrist. However, they are not perfect. These works 

used a single TPD throughout the entire treatment volume, thus ignoring the variation in 

Figure 7: Left shows how the breast radius varies in the cranio-caudal direction; right shows how the 
breast separation varies in the cranio-caudal direction for the same collected patient breast. 
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breast size in the cranio-caudal direction. Figure 7 shows an example of how the breast 

radius and separation may vary in the cranio-caudal direction. It seems likely that there 

is additional dose homogeneity that can be recovered through considering more of this 

information when treatment planning. Alghufaili and colleagues correlated the entire 

contour of the breast to the optimal TPD to the end of achieving a homogenous dose 

delivery66. This work broke the breast into three discrete regions (superior, middle, 

inferior), and using the average radius and separation in each of the regions output 

treatment plans using three separate TPDs in the cranio-caudal direction.  

1.5 – Proposed Work 

Our work looks to build on the works of 

Friend and colleagues, Emmens and 

James, and Alghufaili and colleagues, in 

that the entire breast size and shape at 

each axial slice will be used to 

determine the optimal TPD for the 

treatment plan. Each ray within the 

tangentially opposed fields will have a 

different TPD based on the variation in 

the breast radius and separation in the cranio-caudal direction, and this work will account 

for this. Figure 8 shows an exemplification of how our work may improve on previous 

attempts of correlating TPD to the breast size and shape. Attempting to select a single or 

a few TPDs which is optimal over the entire breast volume is impossible due to the 

variation in breast size and shape. It seems likely that improvements in the dose 

Figure 8: Actual optimal compensation depth 
(TPD) as a function of axial slice and two proposed 
models for optimal TPD. 
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homogeneity with the electronic compensation technique may be realized with a higher-

resolution correlation of breast size and shape to the optimal x-ray fluence. We look to do 

this optimal TPD selection with a completely automated and comprehensive framework, 

such that both the variation in plans across different treatment planners may be mitigated, 

and the manual input required of the medical dosimetrist may be reduced. This work can 

be broken up into two portions. Firstly, an automated measurement technique must be 

developed which can accurately assess the breast size and shape using already clinically 

acquired pre-treatment imaging as the sole input. Secondly, the result of this size and 

shape measurement must be correlated to the proper beam fluence such that the 

delivered dose profile is optimally homogenous. We consider this work as a potentially 

better starting point for the forward planning procedure of the medical dosimetrist. Instead 

of starting with a plan obtained using an empirically determined TPD, requiring many 

iterations and lots of manual input to satisfy dose constraints, an automated framework 

such as our proposed algorithm could be used which may only require minimal 

modification prior to treatment. 
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Chapter 2: Automatic Measurement of Breast Radius and Separation 

2.1 – Pre-treatment imaging 

here has been a bevy of research into radiation therapy planning with imaging 

modalities such as MRI67, but conventional electronic compensation 

techniques are proceeded by CT-based imaging for target delineation and 

healthy structure localization68,69. Additionally, the attenuation data that CT provides is 

crucial for dose delivery estimation during the treatment planning stage. Volumetric 

imaging allows for the computation of three-dimensional dose calculations during 

treatment planning which provides the most accurate simulation of the prescribed 

treatment. The image data from the CT-simulation is first used for segmentation and 

definition of not only the treatment volume but also the surrounding healthy tissue and 

structures including the lung volume and heart. A radiation oncologist typically carries out 

this segmentation process manually, but much recent work has been carried out 

regarding the automatic segmentation of structures utilizing artificial intelligence and 

machine learning70,71. If certain structures like the lung or heart are in danger of radiation-

induced damage due to the treatment, additional dose constraints can be applied to the 

treatment to avoid the damage.  

2.2 – Breast Size Measurement Algorithm Development 

2.2.1 – Ground Truth Data 

CT-simulation imaging is carried out as part of the standard pre-treatment clinical 

workflow at Roswell Park Comprehensive Cancer Center, hence it makes sense to use 

this type of imaging as the input to the automatic breast size and shape algorithm. To this 

end, we retrospectively collected and anonymized three patients’ CT-simulation data to 

T 
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develop the automated framework for measurement of the breast radius and separation. 

These were patients who were undergoing electronically compensated whole-breast 

external beam radiation therapy for breast cancer treatment. Informed consent was 

waived, as this was a retrospective collection of patient image data. Included in this small 

collection of patient data were two left-sided and one right-sided treatment. To assess the 

accuracy of the proposed automated breast size measurement tool, ground truth 

measurements were performed by hand in each axial slice in the treatment volume of the 

three collected patient datasets. In these cases, the treatment volume was determined by 

placement of superior and inferior platinum markers on the patient prior to simulation. The 

two measurements that typically define the breast size and shape in the literature are the 

breast radius and separation. In this work, we 

defined the breast radius as the distance from 

the chest wall to the anterior apex of the 

breast, and the breast separation as the 

distance along the posterior edge of the 

breast. Figure 9 details the breast radius and 

separation measurement methods used in 

this work.  

2.2.2 – Image Pre-processing 

Figure 7: Left breast radius (yellow) and 
separation (red) hand-measurement with result 
overlaid on figure. This process was repeated for 
each axial slice in three patients’ treatment 
volumes. 

Measured Radius =  

7.7 cm 

Measured Separation =  

16.8 cm 
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Our algorithm was developed within MATLAB R2016a (MathWorks, Massachusetts, 

USA). The first step of our framework is the identification of medial and ipsilateral platinum 

markers placed prior to CT-simulation. It is important that these markers are platinum, as 

it makes for easy identification from the rest of the image data using simple intensity 

thresholding. Platinum is highly attenuating to x-rays 

(Z=78) and these markers will have the highest 

intensity in CT-simulation image data save for certain 

image artifacts. Two square ROIs are required as input 

to the algorithm (Figure 10), the first is around the 

ipsilateral marker and the second around the medial 

marker. These ROIs can be rather large, and just 

roughly localize the markers to the algorithm such that 

any artifacts which may be present in the image data 

do not corrupt the algorithm. Within each of the two 

ROIs, the pixel location with the highest intensity is 

determined to be the marker location. If the medial 

marker is found to be to the right of the ipsilateral 

marker by x-position, the treatment is a left-sided 

treatment, otherwise if the medial marker is to the right 

of the ipsilateral marker, it is a right-sided treatment. A 

vector is created connecting the two marker 

coordinates, extrapolated out to the image boundaries 

(Figure 11), and all structure beneath this vector is 

Figure 10: Example of ROI selection for 
left-sided breast ipsilateral (yellow) and 
medial (red) identification. 

Figure 11: Vector connecting ipsilateral 
and medial markers following 
identification with intensity 
thresholding. 

Figure 12: Removal of image data 
beneath vector leaving just the targeted 
breast at specific axial slice. 
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removed from the image data (Figure 12). There is one last removal of spurious structures 

in the image data with a morphological opening operation72. This removes small 

structures and other noise that may have been in the image data. The intent of these pre-

processing steps is to remove all of the image data that is not the targeted breast, to 

simplify the anatomy for the breast radius and separation estimation. Structures like the 

patient couch and other patient anatomy could potentially confound the algorithm and add 

more complexity to the breast radius and separation estimation. 

2.2.3 – Hough Transform 

Initially developed for analysis of lines within bubble chamber photographs73, the Hough 

transform is a feature extraction technique with widespread usage in computer vision and 

image processing74. Extended to the detection of arbitrary shapes in 1981 by Ballard with 

template matching75, the Hough transform is a popular technique for the identification of 

the positions, contours, and orientation of ellipses and circles76.  

In the case of circle detection, there are three parameters that must be identified for a 

well-detected shape; the x and y coordinate of the center of the circle and the circle’s 

radius. These three parameters are determined through a voting procedure carried out in 

the two-dimensional parameter space of the circle’s center coordinates, and the one-

dimensional parameter space of the circle’s radius. In each of the parameter spaces, the 

highest voted circle center and radius will be the local maxima and can therefore be 

detected and re-mapped to the original image for circle detection. The circular Hough 

transform has been utilized for widespread applications such as automatic people 

counting detecting heads and circles77, and in the context of brain aneurysm detection 

and classification from digital subtraction angiography image data78. More detail 
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regarding the operation of the Hough transform for a generalized circle identification will 

follow. 

A generalized Hough transform typically beings with some form of edge-detection. This 

edge-detection can be a simple one such as the Sobel-Feldman operator79, which is the 

use of two 3x3 convolutional kernels applied to the image data to compute horizontal and 

vertical gradients. The result of this is a two-dimensional map of the gradient at each 

point. Areas of high gradient will be highly visible in the output as white lines. A second 

and more mathematically nuanced and perhaps more effective edge-finder is the Canny 

edge detector80, which uses a combination of Gaussian filtering, a Sobel operator, and 

edge tracking with hysteresis to suppress weak edges and emphasize strong ones81. 

Following whichever edge-detection method, the resultant edges are used for circle 

parameter solving with the Hough transform. Consider any circle in a two-dimensional 

space. Mathematically, this circle can be described by Equation 1: 

[1]     (𝑥 − 𝑎)2 + (𝑦 − 𝑏)2 = 𝑟2 

Where (a,b) is the center of the circle and r is the radius. If the two-dimensional point (x,y) 

is fixed, the parameters of circle can be found according to Eq. 1. The parametric space 

is three-dimensional, and all parameters (a,b,r) that satisfy the coordinate (x,y) would lie 

on a surface of a right-angled cone whose apex is at (x,y,0). In the three-dimensional 

space, the circle parameters are detected by the intersection of conic surfaces defined by 

points on the circle.  

To find circle parameters if the radius is fixed, the solution space is reduced to two-

dimensional, with the coordinates of the circle center being the parameters. For each 

point (x,y) on the edge of the shape, define a circle centered at that point (x,y) with fixed 
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radius r according to Eq. 1. The intersection of all of these circles would correspond to 

the center point of the original circle shape. This idea is summarized by Figure 12, where 

the four points on the circle on the left are used to generate four circles of fixed radius on 

the right82. The intersection of these circles is the estimated center of the circle on the left. 

To find circle parameters considering an unknown radius, the parameter space will be 

three-dimensional. A similar method as shown in Figure 13 can be employed, where we 

iterate through all radii in the three-dimensional solution space. In this case, the local 

maxima in the three-dimensional solution space will be the circle center coordinates, with 

the dimension in the third dimension being the estimated circle radius. 

Ellipse detection with the Hough transform is a more difficult problem than circle detection, 

as the parameter space is five-dimensional83; the ellipse’s center coordinates, the major 

and minor axes lengths, and the ellipse orientation. Even still, the process is quite similar 

to the more simple circle detection case outlined in the previous paragraphs. It is just in 

a higher-dimensional space that is more difficult to visualize graphically. It is still however 

just a maximization problem where the overlap of the detected shapes is the solution 

Figure 13: (left) shows a general circle shape. (right) shows four circles generated on four points on the 
edge of the circle. The intersection of these points is the estimated center of the original circle. 
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containing the five parameters of the detected ellipse, the ellipse center coordinates, 

major and minor axes lengths. This more complex solution space makes the elliptical 

Hough transform more sensitive to noise than other forms of the Hough transform, and 

can lead to increased computational requirements to store the larger multi-dimensional 

parametric solution space, and compute the optimal ellipse parameters for best shape 

detection.  

2.2.4 – Ellipse Fitting to Breast 

The image data in Figure 12 is an example of the 

input to our implementation of the elliptical Hough 

transform. In our case, only two ellipse 

parameters (the major and minor axes lengths) 

are of interest for our application, which simplifies 

the problem space and accelerates the 

computation. We assume the major axis length is 

the breast separation and the minor axis length is 

the breast radius. This measurement will be in 

number of pixels. The pixel spacing is found within the digital imaging and 

communications in medicine84 (DICOM) header information of the CT-simulation image 

data (DICOM tag [0028,0030]), and is used to convert the pixel measurements to 

centimeters. This work used image data with isotropic voxels of length 1.269 mm.  As 

mentioned in a previous section, we do this breast radius and separation estimation using 

each slice within the treatment volume. This is identified once again with platinum marker 

detection. Superficial and inferior markers are placed prior to CT-simulation to denote the 

True Rad = 7.8 cm 

True Sep = 19.2 cm 

Estimated Rad = 8.0 cm 

Estimated Sep = 18.0 cm 

Figure 14: CT-simulation axial slice with fitted 
ellipse (red) and breast radius (rad) and 
separation (sep) estimation (yellow) and 
hand-measurement (blue) of left-breast. 
Estimated separation and radius from the 
ellipse major and minor axes length 
respectively, true separation and radius 
measured at the blue and green line 
respectively. 
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upper and lower bounds of the treatment volume. These markers are identified with 

intensity thresholding, and are used to begin and end the region in which the breast radius 

and separation are estimated using the elliptical Hough transform. Figure 14 shows an 

example Ct-simulation axial slice with the detected ellipse overlaid (red), the estimated 

left-breast radius and separation measurement from the major and minor axes lengths 

(yellow), and the actual hand-measured left-breast radius and separation (blue). Included 

on the figure are the locations where the actual separation and radius measurements 

were taken in the blue and green lines respectively. 

2.2.5 – Comparison with Hand Measurements 

The three collected CT-simulation data were used to quantify the accuracy of our 

automated breast radius and separation framework. For each axial slice within the three 

treatment volumes, the hand-measured breast separation and radius were compared with 

the automatically estimated breast separation and radius using the percent difference 

between the numbers. Additionally, comparing the amount of time the algorithm needs to 

perform the measurement with the hand-measurements will give an idea as to the clinical 

applicability of this portion of the framework. Processing that takes too long will not fit in 

well with the current workflow of breast cancer treatment planning. An accurate estimation 

of the breast radius and separation in an automated fashion will allow for further modeling 

of the optimal x-ray fluence. Estimations within a centimeter of the measured breast 

separation and radius will suffice for this application, as the difference in optimal fluence 

should not vary too much within a centimeter of the measured breast radius and 

separation. 

2.3 – Results of Automated Radius and Separation Estimation 
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Within the three treatment volumes, there were 132 axial slices corresponding to 132 

breast radius and separation hand measurements and algorithm estimations. Measuring 

the breast radius and separation by hand took approximately 20 seconds per slice, 

compared with the automated framework, which took approximately 1.5 seconds per slice 

including the amount of time to identify the platinum markers which identify the sidedness 

of the treatment and the span of the treatment volume. That identification is only needed 

once per volume, so averaged over the entire CT-simulation stack, our proposed 

algorithm is more time-efficient than hand-measurements. Additionally, there is a certain 

amount of variability that can be introduced to the planning procedure via hand-

measurements. It is reported that procedures such as target volume delineation could 

have overlaps as low as 10% and standard deviations as high as 60%, which can have 

substantial dosimetric consequences for the patient over the treatment course85. While 

not assessed in this work, both inter- and intra-reader variability is a relevant problem86 

and is addressed via an automated framework. There is also the fact that our automated 

algorithm requires much less user input than hand-measurements, freeing up the medical 

dosimetrist for other important tasks related to treatment planning. Of course, all of this is 

irrelevant if the automated algorithm is not accurate in its breast radius and separation 

estimations. 

Percent error and error measured in centimeters between the breast radius and 

separation hand-measurements and the automatic algorithm estimations are found in 

Table 1. Included are both the individual three collected CT-simulation data averaged 

over all of the slices in the treatment volume, and the average result across all three. 

Recall that included in the collected cohort were two left-sided breasts and one right-
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sided. Average percent difference between the breast radius measurements over the 

three test volumes was 12.6% (95% confidence interval 10.4% – 14.8%), corresponding 

to an absolute measurement error of 0.69 cm (0.59 cm – 0.79 cm). Average percent 

difference between the breast separation measurements over the three test volumes was 

5.2% (95% confidence interval 5.1% – 5.3%), corresponding to an absolute measurement 

error of 0.92 cm (0.79 cm – 1.05 cm). 

Table 1: Agreement between breast radius and separation hand-measurements and automatic algorithm 
estimations in percent different and centimeter (cm) difference. 

Radius 

Number % Difference Difference (cm) 

1 9.6 [9.3-9.9] 0.70 [0.68-0.72] 

2 6.2 [5.7-6.7] 0.40 [0.39-0.41] 

3 22.0 [21.5-22.5] 1.00 [0.98-1.02] 

Average 12.6 [10.4-14.8] 0.69 [0.59-0.79] 

Separation 

Number % Difference Difference (cm) 

1 6.1 [5.0-7.2] 1.13 [1.11-1.15] 

2 4.2 [4.1-4.3] 0.71 [0.68-0.74] 

3 5.3 [5.1-5.5] 0.91 [0.71-1.11] 

Average 5.2 [5.1-5.3] 0.92 [0.79-1.05] 
 

2.4 – Discussion  

2.4.1 – Regions of Overestimation 

In slices where the breast had a small radius 

and separation (radius less than 5 cm, 

separation less than 14 cm), the automated 

algorithm tended to overestimate the radius 

and separation. These slices tended to be 

towards the superior and inferior portion of 

the treatment volume. Figure 15 shows and 

example of this overestimation, where the algorithm estimation disagreed with the hand 

True Rad = 4.5 cm 

True Sep = 14.2 cm 

Estimated Rad = 6.0 cm 

Estimated Sep = 16.0 cm 

Figure 15: Example of axial slice of a left-sided 
breast where the automated algorithm 
overestimated the breast radius (rad) and 
separation (sep). 
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measurement with an approximate percent error of 12% for breast separation and 30% 

for breast radius. This corresponds to a distance error of 1.8 cm for breast separation and 

1.5 cm for breast radius. For slices away from the superior and inferior extremes of the 

treatment volume, the automated algorithm agreed well with the hand-measurements for 

breast radius and separation, with absolute differences averaging to below 1.0 cm for 

both radius and separation. If the assessment were to be constrained to regions close to 

the center of the treatment volume, the percent and absolute difference between the 

hand-measurements and the proposed algorithm’s estimations of the breast radius and 

separation would be lower. 

2.4.2 – Limitations 

There are limitations to this portion of the work involved with the use of the elliptical Hough 

transform for breast radius and separation estimation. We assessed the accuracy using 

just three collected treatment cases. It is difficult to argue that the entirety of the type of 

image data that our proposed algorithm might encounter in the clinic is covered within this 

small test dataset, so outlier examples could potentially give our algorithm difficulty. While 

our algorithm was essentially unsupervised, there was still the one step of pointing the 

algorithm to the medial and ipsilateral markers for breast identification and isolation from 

the rest of the structures in the image data. This is a step that will require an operator at 

the current state of the project, which hurts the clinical applicability of the algorithm. Even 

with this supervision, because image-intensity was used to identify the markers, image 

artifacts might create a condition where the identified medial or ipsilateral marker is 

actually an artifact region, causing the removal of the wrong portions of the image data 

via the connecting of the medial and ipsilateral points. This would all but certainly cause 
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an incorrect breast radius and separation measurement, introducing error into the rest of 

the optimization algorithm. A limitation specific to the elliptical Hough transform, is that 

multiple occurrences of the shape can be identified by the algorithm during the same 

pass. Careful preprocessing was carried out to isolate only the treated breast, but if this 

were to fail such as in the case of outlier image data, multiple elliptical structures may be 

identified which could potentially add bias to the breast radius and separation estimation. 

2.4.3 – Future Development 

This algorithm at its current state takes as input CT-simulation image data, and outputs 

the breast radius and separation slice by slice. Once the medial and ipsilateral markers 

are identified, this process is able to be carried out completely unsupervised. Future work 

will go into fully automating this portion of the algorithm such that the input is the image 

data and without any operator, the breast radius and separation may be estimated and 

output. A natural extension of the breast radius and separation that would fully automate 

this process would be to implement a trained machine learning algorithm to output 

measurements for the radius and separation using the input CT-simulation slices. Given 

enough training data and ground truth radius and separation measurements, this could 

be a relatively easy process to implement using frameworks offered through Keras87. 

Regions of general radius and separation overestimation, such as the inferior and 

superior portions of the treatment volume when the radius and separation are small, will 

need special consideration. A gross overestimation of the breast size and shape may 

cause the modeled x-ray fluence to be suboptimal from a dose homogeneity standpoint, 

and may even cause the introduction to dose hotspots to these regions. There are other 

sorts of feature detection algorithms that could be used in this context such as elliptical 
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template matching88, Kalman filtering89, and elliptical local binary patterns90. The use of 

these techniques may improve on the performance of the Hough transform in the superior 

and inferior portions of the treatment volume. Finally, more examples of CT-simulation 

data should be put through this framework to have a better idea as to how our algorithm 

will handle a wider range of image data. This should include some outlier cases such as 

examples of image data which may be affected with slight image artifacts such as motion 

or ring. 

2.5 – Conclusions 

Recall that at the onset of this portion of the project, the starting goal was the development 

of an automated framework for the estimation of the breast radius and separation using 

CT-simulation image data acquired prior to the onset of breast cancer treatment. This 

was important, as the first step of automating the optimization of electronic compensation 

treatments for breast cancer is estimating the size and shape of the treated breast. To 

create a model optimizing the x-ray beam fluence to the specific size and shape of the 

breast, the breast size and shape must be estimated accurately and efficiently for easy 

implementation to the clinical workflow. For this work, we defined the breast size and 

shape using the breast radius and separation metric. We considered breast radius to be 

the measurement from the chest wall to the anterior apex of the breast and breast 

separation to be the measurement along the posterior edge of the breast. To achieve this 

estimation, a processing framework was developed in the MATLAB programming 

environment.  

This framework involved the preprocessing of the CT-simulation image data. Platinum 

markers were placed on the surface of the patient to define the treatment area, in the 
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cranio-caudal direction, and medial and ipsilateral markers to define the breast volume to 

be treated. These markers were identified due to their level of x-ray attenuation being 

many times that of human tissue and the treatment couch, the other two prominent 

structures in the pre-treatment CT-simulation image data. The medial and ipsilateral 

markers were used to simplify the image data via the removal of all structure from the 

image save for the treated breast. The superficial and inferior markers were used to define 

the starting and stopping points of the treatment volume. The simplified image data was 

then input to our implementation of the elliptical Hough transform for major and minor 

ellipse axes length measurement. The major axis length was assumed to be the breast 

separation, the minor axis length was assumed to be the breast radius. Both of these 

measurements were carried out in number of pixels. The pixel spacing was extracted from 

the DICOM file header, and used to convert a number of pixels to a length in centimeters. 

This breast radius and separation estimation was carried out using each axial slice in the 

treatment volume as defined by the superficial and inferior platinum markers.  

The accuracy of this estimation was assessed via a comparison with hand-measured 

breast radius and separation in three collected CT-simulation volumes. This comparison 

was performed using percent difference and absolute difference in centimeters averaged 

over each of the axial slices in the three volumes. Our results showed good agreement 

between the hand-measured and proposed algorithm breast radius and separation 

measurements, averaging to under a 1 cm error between the estimation and actual 

measurements for both the breast radius and separation over the 3 test volumes. There 

were some regions of an overestimation towards the breast volume periphery, however 

general performance was acceptable. Additionally, the computational performance of the 
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proposed algorithm would fit in well to the current standard clinical workflow, and the 

proposed method is semi-supervised, where only two clicks from an operator are needed 

to estimate the breast radius and separation over the entire treatment volume. 

With this automated breast radius and separation measurement framework developed, 

the next step was the development of a mathematical model correlating these breast 

measurements with the x-ray fluence that can deliver the most homogenous dose 

distribution throughout the breast treatment volume, and a comparison with other 

proposed attempts at less-supervised methods for electronic compensation treatment 

plan optimization. 
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Chapter 3: Correlating Breast Radius and Separation with Optimal Beam Fluence 

3.1 – Summary of Reported Works 

3.1.1 – Breast Cancer Treatment with Electronic Compensation 

s mentioned in a previous chapter, the introduction of dynamic MLC fingers 

has allowed for a much more complex delivery of radiation dose such that 

healthy tissue surrounding the breast treatment volume can be better spared 

and the breast treatment volume can be more homogenously irradiated with the 

prescription dose when compared with the use of a standard wedged radiation delivery91-

94. Electronic compensation using tangentially opposed fields is a technique used for the 

treatment of breast cancer. This technique is reported to improve the homogeneity of the 

delivered dose through the treatment volume due to the ability to vary the x-ray fluence 

across the cranio-caudal direction to compensate for the variation in breast shape and 

size in the cranio-caudal and anterior-posterior direction95. Electronic compensation 

achieves these improvements in the homogeneity of the delivered dose and the dose 

savings to surrounding tissue through the motion of the MLC fingers. At certain points 

during the treatment, the radiation beam can be either partially or fully blocked to modify 

the fluence of the delivered beam to tissue beneath the fingers. This modulation of beam 

fluence adjusts the quality of the treatment beam and will change the dose distribution 

throughout the treatment volume. In regions of the treatment volume where the breast is 

thinner, the delivered beam can be attenuated such that the thinner portion of the breast 

is not overdosed. The amount of compensation for missing tissue is defined within the 

treatment planning software by a metric known as the transmission penetration depth 

A 
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(TPD). This is the depth along each beamlet path in the x-ray field that the tissue 

compensation occurs. 

3.1.2 – Weaknesses of Forward Planning 

In the current clinical practice, the TPD is selected based on the experience of the 

treatment planner, typically a medical dosimetrist. Dose profiles are computed within the 

treatment planning software, Eclipse (Varian Medical Systems, California, USA) 

treatment planning software at our institution, based on the TPD selected by the planner. 

Electronic compensation is forward planned, so the dose profiles are modified through 

manual editing of the fluence maps by the medical dosimetrist. This modification is carried 

out to improve homogeneity within the treatment volume (reduction of radiation hot or 

cold spots) or to reduce dose delivered to critical surrounding structures. This can be a 

time-consuming process (upwards of 30 minutes) with large variability between different 

operators of the treatment planning software based on the operator’s skill or experience. 

It is difficult to ensure that each patient is receiving the best possible treatment plan with 

such variability introduced to the treatment at the planning stage. It seems likely that a 

less-supervised technique for TPD selection and x-ray fluence generation may reduce 

some of this variability, improve the clinical workflow of the medical dosimetrist, and lead 

to better plans for the patient. It also seems likely that a more patient-specific treatment 

based on the size and shape (defined by breast radius and separation) of the targeted 

breast would be a good avenue to explore for improving the treatments. 

3.1.3 – Optimizing Treatment to Breast Radius and Separation 

Attempts have been published in the literature that have correlated the breast radius and 

separation to the depth of electronic tissue compensation that yielded the most 



www.manaraa.com

32 | P a g e  
 

homogenous dose distribution. These works have been summarized in a previous 

chapter, and they all have the same characteristic – they use a single or a few 

compensation depths over the treatment volume, ignoring the large variation in the breast 

separation and radius in the cranio-caudal direction.  

3.2 – Proposed Algorithm 

3.2.1 – Overview of Algorithm 

Our work looks to use the breast radius and separation and correlate it to the optimal 

depth of compensation similar to the previous works. Where we extend on these works 

is we look to use the breast radius and separation at every axial slice in the treatment 

volume, and compute the optimal compensation depth at each of these slices. In this way, 

we believe that plans generated assuming many optimal penetration depths will 

outperform plans generated assuming either one or a few optimal penetration depths 

throughout the treatment volume. To this end, a multi-faceted algorithm was developed, 

the first portion of which was already introduced, which accurately estimates the breast 

radius and separation at each of the axial slices in the treatment volume in a semi-

supervised manner. The second portion is involved with the development of a 

mathematical model correlating these breast radius and separation measurements to the 

optimal depth of compensation. It is important to note that this model will be dependent 

on the selected beam energy of the tangentially opposed field. There will need to be a 

different model for the 6 MV beam and the 23 MV beam. The third portion is the correlating 

of these compensation depths (TPDs within Eclipse treatment planning software) to the 

required x-ray beam fluence needed to deliver the dose to the depths. This last portion is 

important, as it allows for the bypassing of the treatment planning software to obtain the 



www.manaraa.com

33 | P a g e  
 

x-ray fluence. We can instead input the fluence map for each of the tangentially opposed 

fields to the treatment planning software, and let the software determine the MLC motion 

needed to deliver the requested fluence and output the dose distribution curves. In this 

way, we are taking the fully forward-planned process that electronic compensation 

typically follows, and moving to a more inverse-planned treatment planning technique96. 

At this point, it is appropriate to define what is meant by x-ray beam fluence. We do not 

define fluence in the same manner as its physical definition of particles per unit area. 

Instead, we use the definition of fluence used within many IMRT planning sofware97, 

which calls fluence the density of x-rays in the central plane emanating from a point 

source at a distance 100 cm, normalized to a completely open field98. An open beam with 

static MLC fingers will have a fluence of 1 in the field. Fully blocked, the fluence will be 0. 

Simply put, the fluence in this work is a unit-less ratio of the x-ray density of the blocked 

field to the open field, with values between 0 and 1. 

3.2.2 – Development of Mathematical Model with Phantom Study 

Previous work has developed a mathematical model correlating the breast radius and 

separation to the optimal TPD66. We looked to extend this model all the way to correlating 

the breast radius and separation to the optimal x-ray fluence needed to achieve the 

optimal TPD. To do this, semi-elliptical 

phantoms with uniform intensity were 

generated using a simple C++ program and 

input to Eclipse treatment planning software. 

These phantoms simulated axial slices of the 

breast with a radius varying from 5 cm to 12 

Figure 16: Example volume simulating breast with 
radius equal to 6 cm and separation equal to 16 
cm. In this case, the radius and separation were 
non-variant in the depth axis. 
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cm, and a separation varying from 12 to 24 cm, and 

matched the voxel size (1.269 mm) of the data from 

our clinical scanner. Initially, these phantoms had 

uniform radius and separation in the cranio-caudal 

direction (example volume shown in Figure 16, 

radius equal to 6 cm, separation equal to 16 cm), 

but were replaced with phantoms that had a radius 

and separation which varied in that direction 

(example volume shown in Figure 17). We felt that 

this type of phantom better simulated the patient breast and would lead to the 

development of a more accurate mathematical model correlating the entire breast volume 

to the optimal beam fluence. It is important to note that in the phantom study, the 

“phantom” breast radius was equal to half of the generated ellipse minor axis length, and 

the “phantom” breast separation was equal to the generated ellipse major axis length. 

Figure 17: Example volume simulating 
breast with radius equal to 6 cm and 
separation equal to 16 cm at the central 
axial slice. In this case, the radius and 
separation were changing in the depth 
axis, better simulating a real breast. 
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The phantoms with known and varying radius and separation were input to Eclipse, and 

the TPD was set in-accordance with a previously published model correlating the radius 

and separation to the optimal TPD66. The treatment field size for each of the tangentially 

opposed fields was set to 20 cm by 20 cm, and the x-ray beam energy was set to either 

6 MV, 10 MV, or 23 MV, which are the commonly used energies used in the context of 

breast cancer treatment with electronic compensation. The x-ray fluence needed to 

deliver the dose to the compensation depth was measured within Eclipse. This was done 

for all of the phantoms with the different combinations of radius and separation and for 

the three beam energies to develop the three models correlating the breast size and 

shape to the x-ray fluence needed to achieve the compensation depth needed to deliver 

the optimally homogenous dose distribution throughout the treatment volume. The 

graphical visualization of the model for the 6 MV beam is shown in Figure 18.  
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Figure 18: Model correlating the measured breast separation and radius with the x-ray fluence needed to 
deliver the dose to the compensation depth needed to achieve the most homogeneous delivery throughout  
the breast volume. 
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As previously mentioned, there was a different model for each of the three beam energies 

selected, 6 MV, 10 MV, and 23 MV. To find the mathematical equation which best fits 

these planes, minimizing the least-square error between the measured model and the 

proposed equation was carried out. To simplify the number of parameters in the equation 

and improve the generalizability of the model, we assumed a bilinear fit for each of the 

three models. The three mathematical fits that were computed are found in Equations 2 

through 4,  

[2]        𝑓(𝑟𝑎𝑑𝑖𝑢𝑠, 𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛, 6 𝑀𝑉) = 0.753 + 0.006 ∗ 𝑟𝑎𝑑𝑖𝑢𝑠 − 0.005 ∗ 𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛 

[3]       𝑓(𝑟𝑎𝑑𝑖𝑢𝑠, 𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛, 10 𝑀𝑉) = 0.832 + 0.010 ∗ 𝑟𝑎𝑑𝑖𝑢𝑠 − 0.006 ∗ 𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛 

[4]       𝑓(𝑟𝑎𝑑𝑖𝑢𝑠, 𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛, 23 𝑀𝑉) = 0.888 + 0.006 ∗ 𝑟𝑎𝑑𝑖𝑢𝑠 − 0.007 ∗ 𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛 

where radius and separation are the estimated breast radius and separation values output 

from the work shown in a previous chapter. Each of these fits had good agreement with 

the measured data (r2 values of 0.96, 0.94, and 0.92 for the 6, 10, and 23 MV beam fits 

respectively). These mathematical results are in-agreement with the work of Emmens and 

James65 and Alghufaili and colleagues66, who reported an increase in the TPD needed 

when the breast separation decreases and the breast radius increases. This portion of 

the work showed that the TPD is related with the x-ray fluence, in that more fluence is 

needed to attain a deeper compensation depth, putting our work in-agreement with the 

literature. These models can be used to compute a mapping of the x-ray fluence delivered 

to the surface of the breast needed to deliver the most homogenous dose, across all axial 

slices in the treatment volume.  

3.2.3 – Two-Dimensional Fluence Map 
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It is important to note that these models only correlate the fluence at the surface to the 

breast to the breast radius and separation. To acquire a comprehensive two-dimensional 

mapping of the fluence in the beam-eye view, we need to also consider those regions 

deep from the surface. As each of these beamlets pass into the breast volume, we 

assume exponential drop-off of the fluence as governed by the Beer-Lambert-Bouguer 

law99-101. This is summarized by Equation 5 and exemplified in Figure 19. 

[5]                             𝐹𝑙𝑢𝑒𝑛𝑐𝑒(𝑑𝑒𝑝𝑡ℎ) = 𝐹𝑙𝑢𝑒𝑛𝑐𝑒(𝑑𝑒𝑝𝑡ℎ = 0) ∗ 𝑒−𝜇∗𝑑𝑒𝑝𝑡ℎ 

Where fluence is the intensity of the fluence map at the considered image location some 

depth from the surface of the breast measured in pixels. μ is the linear attenuation 

coefficient of the material the beam is 

transmitting through. In this case, this value 

was kept a constant value because the 

phantoms used for this study were uniform 

in image intensity. In the context of CT, this 

means that they have a uniform x-ray 

attenuation throughout the phantom 

volume. The fluence at the phantom surface was scaled at each pixel location from the 
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Figure 20: Optimal fluence maps from (a) assuming a single optimal penetration depth, from (b) assuming 
three optimal penetration depths, and (c) our proposed model which assumes a new penetration depth for 
each slice in the cranio-caudal direction.  
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Figure 19: Exemplification of exponential drop-off of 
beam as it passes through the breast volume. This 
drop-off follows the Beer-Lambert-Bouguer law. 
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phantom surface to compute the x-ray fluence needed for the most homogenous dose 

delivery at that point in the treatment volume. In this way, we compute a two-dimensional 

fluence map that takes into account the variation in breast radius and separation in each 

axial slice present in the cranio-caudal direction. An example of one of these fluence 

maps is found in Figure 20, where each fluence measurement is for a different voxel in 

the CT-simulation data. Included in the figure are the corresponding fluence maps that 

would have been obtained if a single penetration depth were assumed or if the breast 

were split into three regions, each with their own optimal penetration depth as previous 

works published in the literature would have done. 

This model correlating the breast radius and separation to the optimal beam fluence at 

any point in the treatment volume was coupled with the semi-supervised breast radius 

and separation estimation framework. This created a comprehensive algorithm which 

takes in as input the pre-treatment CT-simulation image data and outputs fluence maps 

for each of the tangentially opposed fields for any beam energy that might have been 

selected due to breast size. 

3.2.4 – Comparison in Real Patient Data 

To validate this model, actual patient data was needed. Ten electronic compensation 

breast cancer treatment courses planned and delivered at Roswell Park Comprehensive 

Cancer Center were retrospectively collected. The pre-treatment CT-simulation image 

data were anonymized for each patient, and put through our proposed algorithm. Our 

algorithm estimated the breast radius and separation and used those measurements to 

obtain two-dimensional x-ray beam fluence maps. These fluence maps were put to 

Eclipse treatment planning software to generate a new treatment plan. The original 
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oncologist organ contours were kept, as well as the dose constraints that were placed on 

the original treatment. The resultant dose distributions from these generated fluence 

maps were compared with those from the original plans generated by the iterative, 

manual editing of fluence maps by a medical dosimetrist. Two other plans were generated 

from each patient course, the first by assuming a single optimal penetration depth 

determined by taking the average breast radius and separation in the cranio-caudal 

direction over the entire breast, and correlating it to the optimal TPD using the work 

published in the literature66. This optimal TPD was put to Eclipse, and the fluence maps 

and resultant dose distributions were generated. This is analogous to the current method, 

without any dosimetrist optimization. The second plans were generated by recreating the 

work of Alghufaili and colleagues66, which we call the three-region breast model. This 

work broke the breast down to three volumes in the cranio-caudal direction, and using the 

average radius and separation in each of those regions, three separate TPDs were 

computed and fluence maps and dose distributions were generated in Eclipse. All four of 

these plans were quantitatively compared for dose homogeneity using the dose 

homogeneity index (HI)102-104, defined in Equation 6. 

[6]                                                      𝐻𝐼 =
𝐷2−𝐷98

𝐷𝑝
∗ 100% 

Where 𝐷2 and 𝐷98 represent doses to 2% and 98% of the treatment volume respectively, 

and 𝐷𝑝 represents the prescription dose. With this definition of HI given in Equation 6, a 

lower number is a more homogenous dose delivery to the treatment volume. Pearson 

correlation coefficients were computed to assess which plans better correlate with the 

plans of the medical dosimetrist. Institutional dose constraints were additionally used as 

a comparative metric. Constraints include keeping hot spots at less than 108% the 
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prescription dose, and cold spots at greater than 95% the prescription dose. Dose to the 

heart and the volume percent above 20 Gy to the ipsilateral lung were measured due to 

their status as critical organs near the breast treatment volume. These metrics are 

important as the heart often receives a biologically significant dose during breast cancer 

treatments, especially during left-sided breast treatments105. This dose puts the patient at 

risk for conditions such as cardiomyopathy and an increase in heart disease following 

external beam radiation therapy106. It is reported that the ipsilateral lung is at risk for 

sequelae following breast cancer treatments107. Tracking a patient’s risk for these 

conditions is an important part of maintaining the quality of life following treatment. Dose 

volume histogram (DVH) curves were also output for the breast treatment volume, 

ipsilateral lung, and heart to compare differences between the techniques108. In total, the 

four planning techniques were compared based on their ability to meet the institutional 

dose constraints, homogenously deliver dose to the treatment volume, and reduce dose 

delivered to the heart and ipsilateral lung. The amount of time it took our proposed 

algorithm to generate each plan was also measured. This included the breast radius and 

separation estimation portion of the algorithm, as well as the mathematical model 

correlating the radius and separation to the required x-ray fluence. 

3.3 – Results of Treatment Plan Comparison 

Our proposed algorithm generated plans in around 20 seconds averaged over all ten of 

the treatment courses. This compares well with the medical dosimetrist plans, which can 

take up to 30 minutes due to the iterative and manual process of editing the fluence maps 

to bring the generated plans within institutional dose constraints. It is also important to 
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note that our proposed algorithm requires much less user input than the classical forward 

planned iterative method. This is an improvement to the clinical workflow. 

 

Table 2 summarizes the dose HI for each of the ten collected electronic compensation 

treatment courses comparing the original plans created by the iterative process of the 

medical dosimetrist, our proposed semi-supervised algorithm, those plans generated 

assuming the three-region breast model, and the use of a single optimal penetration depth 

over the breast treatment volume. The HI for plans generated using our proposed 

algorithm averaged to 12.6 over the ten collected courses. This is in comparison with 

plans from the medical dosimetrist, whose average HI over the ten courses was 9.87. 

This difference between the two techniques was not significant, as assessed through a 

two-tailed heteroscedastic Student’s T-Test109. This is a positive result, as statistically our 

algorithm generates plans that are non-inferior to the plans generated by the medical 

dosimetrist. These plans are created with much less user supervision and in much less 

Table 2: Summary of dose homogeneity indices (HI) for all ten collected 
treatment courses. Included in this comparison are the treatments generated 
with our proposed algorithm, plans created using the three-region breast model, 
those plans manually optimized by a medical dosimetrist, and plans generated 
by assuming a single compensation depth (TPD) throughout the entire treatment 
volume. There was no statistical difference between HI measured from our 
proposed algorithm’s plans and the medical dosimetrist’ plans as assessed with 
a Student’s T-Test. 
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time. The other two techniques both had HI averages that were higher than that of our 

proposed algorithm, 15.6 for the three-region breast model, and 17.0 for the single TPD 

technique. All but the single TPD plans had their minimum HI value from the same 

treatment course, 4.59 for our proposed algorithm’s plan, 3.82 for the medical dosimetrist 

plan, and 7.44 for the three-region breast model’s plan. This was the similar for the 

technique’s maximum HI; it came from the same collected course. The HI from this course 

was 26.7 for our proposed algorithm’s plan, 16.5 for the medical dosimetrist plan, and 

22.4 for the three-region breast model. Our proposed algorithm created plans that 

bettered the medical dosimetrist plans in terms of dose homogeneity in two of the ten 

courses, bettered the plans from the three-region breast model in eight of the ten courses, 

and bettered the plans from using a single TPD in nine of the ten courses. Additionally, 

Pearson correlation coefficients indicated that our algorithm’s plans’ HI better correlated 

with the dosimetrist plans HI (0.868) compared with both the three-region breast model’s 

plans’ HI (0.827) and the single TPD model’s plans’ HI (0.797). This indicates that our 

algorithm is able to generate treatment plans that better correlate with the clinical 

standard expert plans.  
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Table 3 summarizes the global dose maximum and treatment volume dose minimum for 

each of the ten collected courses. Recall that an institutional dose constraint was that the 

global dose maximum must remain below 108% the prescription dose and the treatment 

volume dose minimum must remain above 95% the prescription dose. Our algorithm’s 

plans matched the dosimetrist plans in satisfying the maximum dose constraint (less than 

108% prescription dose) in nine out of ten of the collected courses, and the minimum 

dose constraint (greater than 95% prescription dose) in eight out of ten cases. The 

specific courses where the plans fell outside of constraints were in cases of large breasts 

where delivering a homogenous dose throughout the treatment volume is the most 

challenging. In cases like these, the treatment was still delivered using the dosimetrist 

plans, even though it lied out of dose constraint.  Both the three-region breast model and 

the use of a single TPD generated plans which did not meet the maximum dose constraint 

in a single collected course. The three-region breast model generated plans which met 

Table 3: Summary of global dose maximum and treatment volume (CTV) minimum dose values for all ten 
collected treatment courses. Included in this comparison are the treatments generated with our proposed 
algorithm, plans generated using the three-region breast model, those plans manually optimized by a 
medical dosimetrist, and plans generated by assuming a single compensation depth (TPD) throughout the 
entire treatment volume. Our proposed algorithm generated plans that satisfied institutional dose 
constraints (global dose maximum less than 108% prescription dose, CTV dose minimum greater than 95% 
prescription dose) at an equal rate to the medical dosimetrist plans. 
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the minimum dose constraint in eight out of ten courses, while the single TPD technique 

met the minimum dose constraint in five out of the ten collected treatment courses. 

Clearly, our proposed algorithm was better able to meet our institutional dose constraints 

compared with the three-region breast model and the use of a single TPD throughout the 

treatment volume. Once again, our proposed algorithm was non-inferior to the medical 

dosimetrist plans. 

Table 4 summarizes the mean dose to the heart contour and the volume percent above 

20 Gy to the ipsilateral lung (V20 Gy) over the ten collected courses. Our proposed 

algorithm’s plans V20 Gy averaged over the ten collected courses was 149 cGy compared 

with the 104 cGy the medical dosimetrist plans delivered to the heart. The discrepancy 

between the two numbers can be explained by a single case (number 10), a left-sided 

breast treatment, where manual blocking of the field over the heart was performed in the 

dosimetrist plans to reduce the mean heart dose. This blocking was not done in any of 

the semi-supervised techniques, so the mean heart dose is higher in the plans from the 

other three techniques for this course. Considering the ipsilateral lung V20 Gy, the 

percentages are similar across the four techniques. All are well within the institutional 

tolerances. Ignoring this case (number 10) where there was some manual blocking of the 

field, in terms of mean dose delivered to the heart and the ipsilateral lung V20 Gy, there 

was no statistical difference indicating between our algorithm’s plan and the medical 

dosimetrist plan. 
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Table 4: Summary of mean dose to the heart and the ipsilateral lung V20 Gy for all ten collected treatment 
courses. Included in this comparison are the treatments generated with our proposed algorithm, plans 
generated using the three-region breast model, those plans manually optimized by a medical dosimetrist, 
and plans generated by assuming a single compensation depth (TPD) throughout the entire treatment 
volume. Ipsilateral lung V20 Gy is similar for all four techniques. Mean dose to the heart is similar between 
the four techniques save for course number 10. This specific case had manual blocking of the x-ray field in 
the medical dosimetrist plan which reduced the heart dose. The other three techniques did not have this 
blocking and had correspondingly larger mean heart doses delivered by the treatment. 

 

 Mean dose to the heart (cGy) Ipsilateral lung V20 Gy (%) 

Number 
Proposed 

Work 

3-region 

breast 
model 

Dosimetrist 

Optimized 
Single TPD 

Proposed 

Work 

3-region 

breast 
model 

Dosimetrist 

Optimized 
Single TPD 

1 11.0 15.0 13.7 13.4 0.42 2.30 2.41 2.05 

2 298 296 294 327 18.2 18.3 16.7 20.3 

3 177 165 109 160 5.12 4.91 3.56 4.65 

4 271 267 149 250 9.09 9.03 8.07 7.93 

5 40.8 44.9 39.7 42.0 16.6 16.8 15.8 16.2 

6 113 112 108 111 8.95 8.84 8.33 8.59 

7 47.0 52.4 47.7 51.7 9.56 11.2 9.9 10.9 

8 26.9 28.9 26.5 28.7 11.4 11.2 11.4 10.9 

9 95.9 128 89.5 125 9.18 10.8 7.8 10.6 

10 406 402 159 397 18.7 18.5 12.4 18.2 
Average 149 151 104 151 10.7 11.2 9.65 11.0 

Figure 21: (a,c,e) axial, coronal, and sagittal views of the breast treatment volume showing the isodose color 
washes from the treatment plan generated with the proposed algorithm. This plan’s measured homogeneity 
index was 10.6. (b,d,f) axial, coronal, and sagittal views of the breast treatment volume showing the isodose 
color washes from the treatment plan generated by assuming a constant transmission penetration depth of 
30%. This plan’s measured homogeneity index was 17.2. Note the anterior hotspot present in the isodose 
color washes in the single penetration depth plans (white arrows). This hot spot is not present in our 

algorithm’s plans. 

(a) 

(f) (b) 

(c) 

(d) 

(e) 
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Figure 21 demonstrates isodose color washes in the axial, sagittal, and coronal planes. 

One set were generated from fluence maps computed within our proposed algorithm, the 

other from the current method utilized in the Eclipse TPS that assumed a constant TPD 

over the entire treatment volume. Qualitatively, our proposed algorithm creates a plan 

that has a more homogenous dose coverage throughout the breast, and a reduced 

anterior hotspot, indicated with the white arrows. This specific case (number 3 in Tables 

2-4) had a HI of 10.6 from our algorithm’s plan and an HI of 17.2 from the plan assuming 

a single TPD of 30% throughout the breast volume. Assuming the three-region breast 

model generates a treatment plan that yielded an HI of 15.2 for this specific course. The 

medical dosimetrist optimized plan yielded an HI equal to 11.2 for this treatment course.  

Figures 22 through 24 show dose volume histograms from the breast treatment volume 

(Figure 22), ipsilateral lung (Figure 23), and the heart (Figure 24) comparing the 

treatments generated using our proposed algorithm (triangle points in DVH curves) and 

the original medical dosimetrist treatment (square points in DVH curves). These DVH 

curves were measured from course number 8 in Tables 2-4, and show that for this case, 

Original 

Proposed  

Algorithm 

Figure 22: Dose volume histogram curves throughout entire breast treatment volume for our proposed 
algorithm’s plan (triangle) and the original medical dosimetrist plan (square). This specific case yielded 
homogeneity indices of 7.57 for our algorithm’s plan and 8.84 for the original plan indicating a more 
homogenous delivery of dose throughout the treatment volume using our algorithm’s plan.  
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there is better homogeneity throughout the treatment volume (DVH curve better 

approaches prescription dose of 40.05 Gy) and similar ipsilateral lung and heart doses. 

All ten of the courses do not necessarily pose as compelling of an argument, but 

statistically non-inferior performance coupled with an improvement in the clinical workflow 

indicate some clinical value to this sort of processing and treatment planning. 

 

Original 

Proposed 
Algorithm 

Figure 23: Dose volume histogram curves for the ipsilateral lung for our proposed algorithm’s plan (triangle) 
and the original medical dosimetrist plan (square). This specific case yielded ipsilateral lung V20 Gy of 11.4% 
for both of the two treatment techniques.  

Original 

Proposed 
Algorithm 

Figure 24: Dose volume histogram curves for the heart from our proposed algorithm’s plan (triangle) and 
the original medical dosimetrist plan (square). This cases yielded a mean heart dose equal to 26.9 cGy 
compared with a mean heart dose of 26.5 cGy for our proposed algorithm’ plan and the medical dosimetrist 
plan respectively. 



www.manaraa.com

48 | P a g e  
 

3.4 – Discussion  

3.4.1 – Isodose Color Wash Comparison 

A comparison of the isodose color washes in Figure 21 shows better coverage of the 

green color wash area over more of the treatment volume in the three views when the 

plan from our proposed algorithm is used instead of the single TPD of 30%. In the axial 

slice (Fig. 21a and 21b), the green wash extends closer to the posterior edge of the breast 

volume up to the lung volume. The sagittal view (Fig. 21e and 21f) shows an advantage 

with using our proposed algorithm in terms of the coverage of the green wash towards 

the inferior portion of the breast volume. In all three of the views, the green wash is more 

homogenously delivered throughout the treatment volume, as confirmed with the HI 

measurement for this case (10.6 for the proposed algorithm plan, 17.2 for the single TPD 

plan). In the proposed algorithm plan there is a noted reduction in an anterior radiation 

hot spot that is prevalent in all three of the views from the single TPD plan. This can be 

clinically significant, as it are these hot spots which can cause the radiation therapy 

adverse effects often reported in the literature. This reduction in the hot spot can be 

attributed to using the information present in the entire treatment volume (breast radius 

and separation) to generate the treatment plan, as opposed to just a single axial slice. 

3.4.2 – Mathematical Models 

When considering the mathematical models fitted for the 6 MV, 10 MV, and 23 MV 

treatment beams (Equations 2, 3, and 4 respectively), they are all dominated by the DC 

additive component. The breast radius and separation both play a roll; additive for the 

radius, subtractive for the separation, but this roll is small numerically. Even with this small 

numerical tuning of the models with the breast radius and separation, there is a large 
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difference in how the dose is delivered through the treatment volume. A small change in 

the beam fluence delivered over the course of many fractions can have a large impact by 

the end of the treatment, as confirmed by Tables 2-4, the isodose color washes in Figure 

21, and the DVH curves in Figures 22-24. 

3.4.3 – Regions of Overdosing 

As discussed in a previous chapter, with breasts of small separation and radius, our semi-

supervised size estimation algorithm tends to overestimate the radius and separation. 

This is also true in the extreme superior and inferior regions of the treatment volume, 

where the breast radius and separation tend to be small, less than 5 cm and 14 cm for 

the radius and separation respectively. An overestimation of the breast radius and volume 

would be input to our mathematical model, and result in a beam fluence that is higher 

than what would actually be optimal for that specific axial slice. This could result in regions 

of overdosing depending on the accuracy of the radius and separation estimation, causing 

radiation hot spots and reducing the homogeneity of the treatment plans. Of the collected 

courses where there was a large disparity between the dosimetrist plans and our 

proposed algorithm’s plans, there were regions of overestimation by our semi-supervised 

radius and separation algorithm. This led to a reduction in the HI. It makes sense that in 

these cases, some manual fluence optimization would be necessary to reduce these 

hotspots present in the dose profile.  

3.4.4 – Our Algorithm in the Clinical Workflow 

We think of this work as a potentially more homogenous starting point for the iterative 

forward planning process of the medical dosimetrist. Currently, a single TPD is empirically 

selected within Eclipse treatment planning software, and the resultant fluence maps are 
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manually edited to improve the homogeneity of the calculated dose profiles and bring the 

treatment plan to within the institutional dose constraints. Our work has shown that our 

semi-supervised algorithm that estimates the breast radius and separation over the entire 

treatment volume using elliptical fitting via the Hough transform and relates them to the 

x-ray fluence required to deliver the most homogenous treatment plan can improve on 

the use of a single compensation depth in terms of satisfying dose constraints and 

homogeneity of the treatment plan. When our algorithm’s plans are compared with the 

dosimetrist plans, there is statistically nothing between them in terms of dose 

homogeneity, however numerically there is a difference. Considering mean dose to the 

heart, the dosimetrist’s ability to add additional x-ray field blocking to protect the heart 

leads to a reduction in the mean heart dose. This type of blocking is currently not possible 

with an algorithm like this, so there will still be a role for the medical dosimetrist in the 

planning room. Starting from a plan generated with our proposed algorithm instead of one 

assuming a single compensation depth throughout the treatment volume should lead to 

a quicker manual editing of the fluence map to bring it within institutional dose constraints 

and optimize it for dose homogeneity. In each of the ten collected cases, there was some 

combination of the global dose maximum being too high (greater than 108% of the 

prescription dose) or the treatment volume minimum dose being too low (less than 95% 

of the prescription dose) from the single TPD plans, which would necessitate manual 

fluence map editing by the dosimetrist. In the cases where these dose constraints were 

met by the original medical dosimetrist plans, our algorithm was able to create plans which 

satisfied the same constraints in a semi-supervised manner. There may be some manual 

editing required to achieve equivalent dose homogeneity, ipsilateral lung V20 Gy, or mean 
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dose to the heart, however compared with the use of a single compensation depth or 

even three as used in the three-region breast model, the plans from our algorithm attain 

a higher level of homogeneity and are more deliverable considering institutional dose 

constraints.  

Figure 25 is an exemplified flowchart as to how our algorithm would fit into the current 

clinical workflow. The patient’ CT-simulation data is acquired and put to the proposed 

algorithm which couples a breast radius and separation estimation framework with a 

mathematical model to correlate the measurements to the required optimal fluence. This 

outputs a two-dimensional fluence map that is readable by Eclipse. Once this map is put 

into Eclipse, the MLC motion and the dose profiles of the planned treatment are 

computed. It is at this stage that any required manual editing of the fluence map by the 

medical dosimetrist can be carried out. This editing may be done to further protect the 

heart or the lung volume, or may be necessary due to a patient with a small breast size 

where the radius and separation might have been overestimated. However, this editing 

should require fewer iterations when compared with starting from a plan that assumed a 
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single compensation depth. This flowchart can be compared with the one from Figure 6, 

which shows the current clinical standard method for the forward-planning procedure. 

3.4.5 – Project Limitations 

A limitation of this current work is it was developed using breast phantoms of uniform 

image intensity. This means that the x-ray attenuation of the phantoms is uniform as well. 

For our assumption of exponential drop-off of the fluence from the surface of the breast 

into the treatment volume as governed by the Beer-Lambert-Bouguer law, this is required. 

It is not the case in a real breast volume. It is this fact that may have caused the estimated 

optimal two-dimensional fluence map to be actually optimal in the actual patient from a 

homogeneity standpoint.  

An additional limitation is in clinical cases where there is skin folding at the breast surface, 

either at the point of CT-simulation or during treatment. The breast radius and separation 

Figure 25: Flowchart showing proposed algorithm’s implementation to clinical workflow. Our algorithm uses 
image data  that is already clinically acquired in the current workflow, and can obtain a treatment course 
with it in a semi-supervised manner. Following the output of the plan, a dosimetrist can manually edit the 
fluence maps as necessary. Compared with the current clinical method, the proposed algorithm’s plan 
should require less editing than the current standard method of assuming a single compensation depth. 
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might not be impacted, but the optimal depth of compensation would be changed, which 

would not be accounted for in our model. This would lead to the generation of suboptimal 

plans that would need some manual editing by a dosimetrist prior to treatment delivery. 

A third limitation of this study is the relatively small number of collected courses that were 

analyzed with our algorithm. Ten treatment courses is probably not enough to get a good 

sampling of the breadth of cases that may be encountered in a typical clinical setting. It 

is unknown at this time how outlier cases would be handled by our algorithm. If there are 

image artifacts present in the initial CT-simulation, the estimation of the breast radius and 

separation may be negatively affected which could throw the entire treatment plan 

generation off. This could include the attenuation information used for dose computation, 

so if the artifacts were bad enough as can happen with motion artifacts, the image data 

would be reacquired. 

A fourth limitation of this work is how the plans were assessed solely with metrics that 

pertain to the quality of the treatment plan. The question persists if the differences in 

homogeneity index between our proposed algorithm’s plans and the plans from the 

medical dosimetrist are clinically relevant. Statistically we know them not to be, but would 

the patient be clinically impacted one way or the other due to differences in the treatment. 

The patient outcome is the focus of all treatments and research in the context of radiation 

therapy, and the metrics selected for this work cannot directly show any differences one 

way or the other in terms of the clinical outcome.  

Lastly, we assumed a bilateral fitting for the mathematical model correlating the breast 

radius and separation to the beam fluence needed to deliver the optimal dose distribution 

throughout the treatment volume. This was done to ensure that the computational 
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efficiency of the model could be as high as possible, without using too coarse of a fit to 

the measured results. We also did not want to overfit to the data the model was obtain 

using. It was only ten cases, hence it is possible that it does not represent the actual width 

of cases seen clinically. It is possible that a more mathematically nuanced model could 

better represent the measured data, without missing the generalizability or the 

computational efficiency of a bilateral fit. Some of the regions of inhomogeneity could 

have been introduced due to assuming too simplistic of a model. 

3.4.6 – Future Directions 

A natural extension of this work is to implement some sort of machine learning approach 

to the algorithm, whether it be just the breast radius and separation portion of the work, 

or the output of the two-dimensional fluence map. It seems likely that the addition of some 

artificial intelligence capabilities would assist in the treatment planning for electronic 

compensation breast cancer treatments, or even radiation therapy in general. A data-

driven strategy which can use patient-specific information such as demographics in 

ensemble with the pre-treatment CT-simulation image data should help with the decision 

making that goes on during the treatment planning stage. This might also add the 

capability of patient-specific blocking of the x-ray field, if it is predicted to deliver too much 

dose to the heart or other critical structures near the treatment volume. In fact, there is 

already work being published regarding machine learning and artificial intelligence as a 

viable technique in the context of radiation therapy treatment planning and the radiation 

oncology practice as a whole110-112.  

More treatment courses should be collected and assessed with this proposed algorithm. 

This would give a better idea as to how the algorithm might handle outlier examples and 
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would allow for tuning of the mathematical model if it is seen that there is a general error 

in certain regions of the breast volume or in breast sizes of a certain radius and 

separation. 

Using a more mathematically nuanced fit with more parameters may improve the results. 

Other fitting equations correlating the breast radius and separation with the optimal 

fluence should be investigated for computational efficiency, generalizability to the entire 

dataset, and actual dose metrics to see if gains can be realized with a different fit. 

Finally, if this algorithm were to ever be considered for actual clinical implementation, a 

prospective study would have to be carried out which compared the current clinical 

standard of a single compensation depth with dosimetrist editing against our proposed 

algorithm with dosimetrist testing. Two cohorts would be collected, each being treated 

with one of the techniques. Such a comparison would use similar metrics as used in this 

work, but could also include clinical outcomes controlled for patient demographics. 

Dosimetrist opinion could be collected as well. Does our proposed algorithm actually 

improve their clinical workflow? Is our algorithm still too supervised to be that much of an 

improvement over the current standard? Such a study would be powerful, in that the 

patient outcome could be assessed and analyzed along with the dose metrics and the 

other comparisons. 

3.5 – Conclusions 

Recall that at the outset of this portion of the work, the goal was to develop a mathematical 

model correlating the breast radius and separation with the required x-ray beam fluence 

needed to deliver a treatment with optimal dose homogeneity. This was done by 

generating uniform semi-elliptical phantoms with varying radius (ellipse minor axis length 
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divided by 2) and separation (ellipse major axis length). These phantoms simulated 

breasts seen clinically. The optimal compensation depth at each of the axial slices in the 

treatment volume was set based on published work, and the fluence needed to deliver a 

dose with the set compensation depth was measured within Eclipse treatment planning 

software. With these measurements, we carried out a least-square error minimization 

problem, assuming a bilateral fit to come up with models correlating the breast radius and 

separation with the required fluence. These models do depend on the beam energy of 

the specific field. These models were coupled with the semi-supervised breast radius and 

separation framework from an earlier chapter, and assessed using ten collected 

electronic compensation treatment courses. CT-simulation data is input to the model, and 

a two-dimensional fluence map is output that is used by Eclipse to generate the dose 

distributions. The treatment plans generated via our proposed algorithm were compared 

against the original dosimetrist optimized plans, as well as two other planning techniques 

– using a single compensation depth throughout the treatment volume and no editing of 

the fluence maps, and breaking the breast up into three regions and using three 

compensation depths in each of the regions. This was done to assess if any gains could 

be found by considering the full volumetric shape of the breast. There is large variation in 

the cranio-caudal direction in-terms of the breast radius and separation, hence it was 

believed that the proposed algorithm’s plans would out-perform those plans from a single 

or three compensation depths, and would hopefully approach the performance of the 

plans generated from the iterative and manual editing of the fluence maps by the medical 

dosimetrist. This would be in-terms of the dose homogeneity index, institutional dose 

constraints 
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Our results indicated that this was the case. There was an improvement in the 

homogeneity of the delivered dose in plans from our algorithm when compared with the 

plans from assuming a single or three compensation depths. Our algorithm’s plans were 

more deliverable compared with using a single or three compensation depths considering 

institutional dose constraints of global dose maximum and treatment volume dose 

minimum. It seems likely, based on these results, that there is some value gained by 

considering the entire breast volume instead of just one or a few measurements 

throughout the breast. 

Comparing our algorithm’s plans with those optimized by the medical dosimetrist, they 

were statistically identical using the homogeneity index metric, mean dose to the heart (if 

we ignore the case where there was manual blocking of the field), ipsilateral lung V20 Gy, 

and the institutional dose constraints. Where our algorithm might improve on the current 

clinical standard is in the amount of manual supervision and time needed to attain these 

treatment plans. Our algorithm is able to generate a plan from the CT-simulation data in 

around 20 seconds. This compares favorably with the manual and iterative current 

process, which can take up to 30 minutes. 

We envision processing such as this being clinically useful as a more homogenous 

starting point for the manual and iterative process of electronic compensation radiation 

therapy treatment planning. The medical dosimetrist may be able to more quickly edit 

plans, to satisfy the institutional dose constraints, from our algorithm compared with those 

generated assuming a single constant compensation depth, which is how it is currently 

done. This may lead to improvements in the clinical workflow, would reduce some of the 

variability introduced into the treatment planning process through the manual and iterative 
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forward-planning process that is currently the clinical standard, and may improve the 

clinical outcomes of the patients undergoing electronically compensated radiation therapy 

for breast cancer. 
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Chapter 4: Future Directions and Project Conclusions 

4.1 – Future Directions 

here is still much work to do to prove the actual clinical utility of the algorithm 

proposed in this thesis. More treatment courses are needed, both to further 

develop the algorithm used to estimate the breast radius and separation from 

the axial CT-simulation image data, as well as to better tune the mathematical models 

used to correlate the breast radius and separation with the optimal x-ray beam fluence. 

The ten collected treatment cohorts in the initial cohort were finely curated for this task. 

The breast sizes were all within the typical clinically seen range (radius between 5 cm 

and 12 cm, separation between 12 cm and 24 cm), and there were minimal artifacts 

present in the image data. All of the image data were acquired on the same model of CT 

scanner, and they were all from the same institute. It is unknown how successful our 

proposed algorithm would be using a dataset collected from multiple institutions, 

potentially from multiple different types of CT scanners. The different acquisition 

parameters such as slice thickness, reconstruction algorithms, and dose levels might 

require some tuning of the algorithm, especially on the side of the breast radius and 

separation estimation. Additionally, other institutions may employ slightly different 

institutional dose constraints that may necessitate different amounts of two-dimensional 

fluence map editing by the medical dosimetrist to bring the generated plans to within 

tolerance. A more expansive collection of image data and treatment courses would allow 

assessment of the generalizability of the model, much better than the original ten 

collected courses from our institution allowed for. 

T 
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As stated in an earlier chapter, our algorithm is not completely automated. The estimation 

of breast radius and separation portion of the algorithm requires the identification of two 

platinum markers by an operator (exemplified in Figure 10), a medial and an ipsilateral 

marker. It is a small bit of supervision required, but the clinical workflow would be greatly 

improved if the full algorithm were completely automated. Full automation would allow the 

two-dimensional fluence maps to be generated right at the point of CT-simulation. The 

medical dosimetrist could then review the maps and make whatever modifications were 

needed to bring the dose distributions to within the institutional dose constraints. There 

are several ideas113-115 as to how to fully automate this step, some more complex than 

others, and should be the focus of future work. Some ideas will be summarized here. An 

atlas-based identification of the markers could be a good avenue to begin. The markers 

generally are placed in the same region on the patient, as they help define the in-plane 

treatment area. This basis knowledge could be utilized in the preprocessing scheme to 

automatically identify the markers, or at least automatically point the intensity thresholding 

to the regions of the markers. A second avenue could be the implementation of machine 

learning to the problem. This could be done at many different levels, with different data 

requirements for each. The task of marker identification could be put to a machine 

learning algorithm. The entire estimation of breast radius and separation could be 

automated using machine learning. Eventually, the entire planning procedure could be 

performed using a trained machine learning algorithm. The plan would still require an 

expert reader to ensure the efficacy of the plan, and would require a massive amount of 

training data for proper model development, so the replacement of the medical dosimetrist 

in treatment planning by a robot will not be happening anytime soon. Advantages to the 
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atlas-based method would be that there would not be a massive requirement of data such 

as in the case of the machine learning based methods. Additionally, the temporal 

efficiency of an atlas-based method should be better, as the processing requirements are 

less versus something like a convolutional neural network.  

Additional future work should be carried out to correct for the general overestimation of 

the breast radius and separation by the Hough transform when the actual radius and 

separation values go below 5 cm and 14 cm respectively. This is shown in Figure 15, and 

is typically seen in the far superior and inferior regions of the treatment volume. There are 

several ways to address this overestimation, the simplest of which would be to apply a 

multiplicative weighting factor to the minor and major axes lengths following the 

conversion from number of pixels to a length in centimeters. This would be a simple 

scaling of the breast radius and separation estimation to bring it closer to the actual radius 

and separation measurement. It would only be used towards the superior and inferior 

portions of the treatment volume, which are the regions where the estimation appears to 

have a general bias to overestimate the true breast radius and separation. Such a 

weighting would then prevent the potential overdosing of these regions due to the 

thickness of the breast being overestimated by the algorithm. This causes the generated 

fluence map to be too high in those regions. The weighting factor could also be applied 

to the fluence map, but it would be more difficult to debug in that case. It is easier to 

assess the corrected radius and separation estimation against the true measurement than 

it would be to check the two dose distributions for regions of overdosing and a potential 

drop in dose homogeneity throughout the treatment volume. 
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There are other portions of the electronic compensation treatment planning procedure 

that might be improved with some automation. A radiation oncologist typically contours 

the breast treatment volume and the surrounding tissue and critical organs such as the 

heart and lungs. This is a very manual process that requires lots of attention which may 

contribute to some of the physician burnout often reported in this day and age116. This 

type of a problem is well-posed for a convolutional neural network due to the vast amount 

of organ contours already present, and has been the topic of lots of development and 

research in the previous years117,118. We predict that it will not be long until the treatment 

planning software will include some levels of automation for organ segmentation, 

treatment planning, or even something like treatment outcome prediction using 

convolutional neural networks or some other machine learning framework. 

4.2 – Project Conclusions 

The work that was completed over the course of this thesis was primarily involved with 

the development of a more automated framework for electronic compensation breast 

cancer treatment planning. The hypothesis at the onset of this project was that the breast 

radius and separation measurement could be correlated to the optimal x-ray beam 

fluence needed to deliver the most homogenous dose distribution throughout the 

treatment volume. This is not a novel idea, other work has been published which has 

investigated the potential of this correlation. What was novel was our use of the entire 

breast volume for this correlation, instead of just a single or a few measurements of breast 

radius and separation. A two-faceted algorithm (entire MATLAB programming code found 

in Appendix A) was developed for this work; the first portion for the estimation of the 

breast radius and separation using preprocessing of pre-treatment CT-simulation image 
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data in conjunction with the Hough transform, the second portion for the correlation of the 

radius and separation measurements with the beam fluence required to deliver the 

homogenously optimal treatment to the breast volume. Following the development of this 

algorithm, we comprehensively assessed it in several ways. The breast radius and 

separation portion was compared against hand-measurements of breast radius and 

separation over three collected CT-simulation image datasets for average percent 

difference between the two. The entire processing framework’s generated plans were 

compared with the original delivered plans manually generated by the medical dosimetrist 

using institutional dose constraints and the dose homogeneity index. Additional 

comparisons were carried out against two other semi-supervised methods for treatment 

plan generation reported in the literature, assuming a single or three compensation 

depths throughout the breast volume. Treatment plan comparisons were done using ten 

collected electronic compensation treatment courses. Our results indicated that our 

algorithm could semi-automatically estimate the breast radius and separation throughout 

the entire treatment volume with good agreement with the hand-measurements (less than 

1 cm difference averaged over 3 collected breast volumes), although there were 

examples of overestimation of breast radius and separation in the case of small breast 

sizes towards the volume periphery. Considering the treatment courses, our algorithm’s 

treatment plans were able to approach the performance of the medical dosimetrist plans 

in terms of the dose homogeneity and the dose constraints. There was no statistical 

difference between the HI, averaged over the test cohort, of our algorithm’s plans and 

those from the medical dosimetrist, and dose constraints were met equally by the two 

sets of plans. Our algorithm does this with much less manual supervision required and in 
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much less time compared with the iterative and manual process of the current clinical 

standard method. Our algorithm was able to improve on the other semi-supervised 

techniques in terms of the deliverability of the plans due to institutional dose constraints 

as well as the dose homogeneity index (HI 12.6 vs 15.6 vs 17.0 for our plans, the three-

region breast model, and the single TPD model respectively). This indicates that utilizing 

the breast radius and separation measurements over the entire breast volume can lead 

to the generation of improved treatment plans, at least in the limited data cohort that this 

work was assessed using. 

We picture an algorithm such as this fitting into the clinical workflow as a ‘closer to 

clinically deliverable’ starting point for the iterative process of the medical dosimetrist. 

This algorithm, which considers the variation in breast radius and separation in the cranio-

caudal direction, generated plans that are more homogenous and closer to deliverable in 

terms of dose constraints than those plans generated considering only one or a few 

measurements of the breast radius and separation, ignoring the variation in the cranio-

caudal direction. A medical dosimetrist starting from plans generated from our algorithm 

might have fewer iterations of manually editing the fluence maps needed compared with 

starting from the current standard of plans generated assuming a single compensation 

depth. This improves the clinical workflow, and reduces some of the variability associated 

with the current forward-planning procedure. 

Work such as this is important for the development of more tools that aid in the radiation 

therapy treatment planning room. Such tools may reduce variability between planners, 

improve the clinical workflow of the planning process, or even aid in the decision making 

which takes place during treatment planning. All of this is beneficial to the patient 



www.manaraa.com

65 | P a g e  
 

undergoing the treatment, and any tool used prior to or during the treatment must keep 

the patient’s best interests as the top priority.  
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Appendix A – MATLAB Algorithm Used in Project 

Included in this appendix is the code used for this work, a flowchart explaining the flow of 

data through the various processing, and a user-guide giving more detail to certain steps. 

Appendix A.1 – User Guide for MATLAB Algorithm 

1. User selects the directory containing the DICOM image data from a popup window. 

This assumes that each individual slice is an individual file within the directory. DICOM 

files read in based on axial position, so they are ordered correctly within the stack. 

 

2. Central slice of the CT-simulation data is displayed and the user defines two ROIs 

corresponding to regions where the medial and ipsilateral markers can be found. This is 

the only supervision required by the program, and is how the sidedness of the treatment  
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is determined. If the medial marker’s x-position is to the right of the ipsilateral marker, it 

is a right sided treatment, otherwise it is left sided. Instructions are included in the 

MATLAB command window to guide the user. The ipsilateral marker region is defined 

first, followed by the medial marker region. These markers are defined by selecting a 

square ROI around the markers, top left corner first followed by the bottom right corner. 

The image data within the ROI is used to isolate the markers away from any image 

artifacts such that intensity thresholding can be used for marker identification. These 

markers are visible for multiple axial slices, so there will be a slice where both markers 

are present and can be used for the identification. 

 

3. Marker positions used to remove all but the breast from the image data. This is put to 

the elliptical Hough transform where the breast radius and separation are estimated.  
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4. Each slice within the treatment volume is put to the elliptical Hough transform. The 

treatment volume is empirically defined as being within the middle 30% of the CT-

simulation data (between the 35% and 65% position axially through the CT-simulation 

stack). This was determined through some trial and error, but it encompasses the superior 

and inferior markers and the fluence maps output from this processing are sized 

appropriately for Eclipse treatment planning software, which our institution uses. The CT-

simulation stack length will depend on the size of the breast, so we can change how many 

slices we consider as the treatment volume taking into account the patient specifics. A 
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morphological opening is used to remove any small spurious objects from the image data 

prior to the Hough transform. The radius and separation are estimated then put to the 

mathematical model correlating the optimal beam fluence with the size measurements for 

all of the beam energies regardless of what was used for the treatment.  

5. This optimal fluence map is two-dimensional, and has a header containing the 

information Eclipse needs to read the map into the treatment planning software. This 

information includes the matrix size in the number of pixels in the x and y direction, the 

size of those pixels in centimeters to convert to a real distance, and the fluence map origin 

location. The rest of the information in the fluence file is the individual fluence factors at 

each pixel.  

 

6. Maps for both the medial and ipsilateral x-ray fields are generated with this process. 

To ensure that the locations match up between the two fields, the fluence maps are first 

computed from the ipsilateral direction where the superior section of the map corresponds 

to the superior section of the breast volume. The ipsilateral map is then rotated 270°, then 

flipped over its x-axis to reorient the map correctly. These two maps are saved as 

‘optimal_fluence’ files, which can be taken as input by Eclipse for treatment planning. 
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Appendix A.2 – MATLAB Computer Code 

% written by ARP 2/2019 

clear all, close all, clc 

  

%// Get all of the files 

directory = uigetdir(); 

files = dir(fullfile(directory, '*.dcm')); 

filenames = cellfun(@(x)fullfile(directory, x), {files.name}, 'uni', 0); 

  

%// Ensure that they are actually DICOM files and remove the ones that aren't 

notdicom = ~cellfun(@isdicom, filenames); 

files(notdicom) = []; 

  

%// Now load all the DICOM headers into an array of structs 

infos = cellfun(@dicominfo, filenames); 

  

%// Now sort these by the instance number 

[~, inds] = sort([infos.InstanceNumber]); 

infos = infos(inds); 

  

%// read in stack of dicoms in correct order 

for k = 1:numel(infos) 

    stack(:,:,k) = dicomread(infos(k)); 
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    substack2 = stack(:,:,k); 

    mask2 = imbinarize(substack2, 'global'); 

    mask2 = bwareaopen(mask2, 10000); 

     

    % figure, imagesc(mask); 

    substack2(~mask2) = 0; % apply mask 

    stack(:,:,k) = substack2; 

end 

  

fprintf('\nPress enter when both medial and ipsilateral markers visible.\n'); 

tool = imtool3D(stack); 

setCurrentSlice(tool,ceil(size(stack,3)/2)); 

setDisplayRange(tool,[-250 2000]); 

pause 

mid = stack(:,:,getCurrentSlice(tool)); 

  

fprintf('\nPick out markers. Ipsilateral one first (top left corner first, bottom right corner 

second, then same with medial.\n'); 

figure, imagesc(mid), hold on; 

[ipsilateralX1,ipsilateralY1,~] = ginput(1); 

[ipsilateralX2,ipsilateralY2,~] = ginput(1); 

  

ipsilateralY1=round(ipsilateralY1);  
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ipsilateralX1=round(ipsilateralX1); 

ipsilateralY2=round(ipsilateralY2); 

ipsilateralX2=round(ipsilateralX2); 

  

ipsilateralBox = 

mid(min(ipsilateralY1,ipsilateralY2):max(ipsilateralY1,ipsilateralY2),min(ipsilateralX1,ipsi

lateralX2):max(ipsilateralX1,ipsilateralX2)); 

[ipsiX,ipsiY] = find(ipsilateralBox == max(max(ipsilateralBox))); 

  

[medialX1,medialY1,~] = ginput(1); 

[medialX2,medialY2,~] = ginput(1); 

  

medialY1=round(medialY1);  

medialX1=round(medialX1); 

medialY2=round(medialY2); 

medialX2=round(medialX2); 

  

medialBox = 

mid(min(medialY1,medialY2):max(medialY1,medialY2),min(medialX1,medialX2):max(m

edialX1,medialX2)); 

[mediX,mediY] = find(medialBox == max(max(medialBox))); 

  

if ipsilateralX2 < medialX2 
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    % % left-sided treatment 

    ipsiX = ipsilateralX1 + ipsiX; % actual X coordinate of ipsilateral marker 

    ipsiY = ipsiY + ipsilateralY1; % actual Y coordinate of ipsilateral marker 

    mediX = medialX1 + mediX; % actual X coordinate of ipsilateral point 

    mediY = mediY + medialY1; % actual Y coordinate of ipsilateral point 

    plane = interp1([mediX ipsiX],[mediY ipsiY], 1:512, 'linear', 'extrap'); 

    plane = int16(max(1,plane)); % restrict to a maximum value of 1 for looping later 

    plot(plane, '--k'); 

    for x = 1:512 

        if plane(x) == 1 

            down = x; 

            break 

        else 

            down = 512; 

        end 

    end 

    mask = poly2mask(double([1 down 1 1]), double([1 1 plane(1) 1]), size(mid,1), 

size(mid,2));    % if a left-sided treatment 

    mask = ~mask; % for left-sided treatment 

else 

    % % right-sided treatment 

    ipsiX = ipsilateralX2 - ipsiX; % actual X coordinate of ipsilateral marker 

    ipsiY = ipsiY + ipsilateralY1; % actual Y coordinate of ipsilateral marker 
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    mediX = medialX2 - mediX; % actual X coordinate of ipsilateral point 

    mediY = mediY + medialY1; % actual Y coordinate of ipsilateral point 

    plane = interp1([mediX ipsiX],[mediY ipsiY], 1:512, 'linear', 'extrap'); 

    plane = int16(max(1,plane)); % restrict to a maximum value of 1 for looping later 

    plot(plane, '--k'); 

    for x = 1:512 

        if plane(x) > 1 

            down = x; 

            break 

        end 

    end 

    mask = poly2mask(double([1 down-1 size(mid,1) size(mid,1) 1 1]), double([1 1 

plane(numel(plane)) size(mid,2) size(mid,2) 1]), size(mid,1), size(mid,2));    % if a right-

sided treatment 

end 

  

figure, imagesc(mask); 

%// extract pixelsize for scaling factor [conversion from pixels to mm then 

%// to cm 

sf = infos(1).PixelSpacing(1); 

  

attenuation_const = 1; % constant scaling factor in the transmittance computation 
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dist_scaling = 250; % a distance scaling factor for the radiation transmittance through the 

phantom 

total = 50; % total number of samples in the fluence map 

n = 1; 

  

for z = ceil(3.5*numel(infos)/10):floor(6.5*numel(infos)/10) % this one is for compuation 

of the size/shape slice by slice 

    substack = stack(:,:,z); 

    substack(mask) = 0; % apply mask on entire stack 

    substack = bwareaopen(substack, 100); % remove small things from the image one 

last time 

  

    ellipse = regionprops(substack,{'MajorAxisLength', 'MinorAxisLength', 'Orientation', 

'Centroid'}); % extract the seperation and the radius 

     

%     slice(n) = z; 

    sep(n) = ellipse(1).MajorAxisLength*sf/10.0; 

    rad(n) = ellipse(1).MinorAxisLength*sf/10.0; % extraction of the separation and radius 

of breast measured in pixels 

     

%     % additionally do TPD using alf's model and show how that changes with the cranio-

caudal direction 

%     if rad(n) > 6.0 || rad(n) < 10.0 
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%         TPD(n) = -1.30 * sep(n) + 55; 

%     elseif rad(n) <= 6.0 

%         TPD(n) = -1.34 * sep(n) + 59; 

%     elseif rad(n) >= 10.0 

%         TPD(n) = -1.20 * sep(n) + 48; 

%     end 

     

%     a = ellipse(1).MajorAxisLength/2; 

%     b = ellipse(1).MinorAxisLength/2; 

%      

%     fig = imagesc(stack(:,:,z)); 

%     colormap gray 

%     hold on 

%      

%     xbar = ellipse(1).Centroid(1); 

%     ybar = ellipse(1).Centroid(2); 

%      

%     theta = pi*ellipse(1).Orientation/180; 

%     R = [ cos(theta)   sin(theta) 

%          -sin(theta)   cos(theta)]; 

%      

%     phi = linspace(0,2*pi,50); 

%     cosphi = cos(phi); 



www.manaraa.com

77 | P a g e  
 

%     sinphi = sin(phi); 

%       

%     xy = [a*cosphi; b*sinphi]; 

%     xy = R*xy; 

%  

%     x = xy(1,:) + xbar; 

%     y = xy(2,:) + ybar; 

%      

%     plot(x,y,'r','LineWidth',2); 

%     sep_str = strcat('Sep = ', int2str(sep)); 

%     rad_str = strcat('Rad = ', int2str(rad)); 

%     text(45,45,sep_str, 'Color','yellow', 'Fontsize',12); 

%     text(45,70,rad_str, 'Color','yellow', 'Fontsize',12); 

%     hold off 

%     saveas(fig, strcat('C:\Users\arpodgor\Documents\MATLAB\medPhys\Alex-Share-

selected\3_marked\slice_',int2str(z),'.png')); 

    % convert to mm by pulling the scaling factor from the dicom tags then multiplying 

%     sep_cm(z-ceil(numel(infos)/4)+1) = sep*sf/10.; 

%     rad_cm(z-ceil(numel(infos)/4)+1) = rad*sf/10.; % measurements in cm 

     

    TF(1,n) = 0.753 + 0.006*rad(n) - 0.005*sep(n); % for a 6x beam 

    for depth = 2:total % splitting up the fluence map into 100 samples, this can and 

probably will have to be changed to match what eclipse wants 
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       % now estimate how the radiation intensity will drop as it moves through the phantom 

(Beer-Lambert Law) 

        TF(depth,n) = TF(1,n) * exp((-attenuation_const*depth/dist_scaling)); % the scaling 

factor will also be changed 

    end 

     

%     TF(1,z-ceil(3.5*numel(infos)/10)+1) = 0.8318 + 0.0101*rad - 0.0057*sep; % for a 10x 

beam 

%     for depth = 2:total % splitting up the fluence map into 100 samples, this can and 

probably will have to be changed to match what eclipse wants 

%         % now estimate how the radiation intensity will drop as it moves through the 

phantom (Beer-Lambert Law) 

%         TF(depth,z-ceil(3.5*numel(infos)/10)+1) = TF(1,z-ceil(3.5*numel(infos)/10)+1) * 

exp((-attenuation_const*depth/dist_scaling)); % the scaling factor will also be changed 

%     end 

%  

    TF(1,z-ceil(3.5*numel(infos)/10)+1) = 0.8878 + 0.0061*rad - 0.0068*sep; % for a 23x 

beam 

    for depth = 2:total % splitting up the fluence map into 100 samples, this can and 

probably will have to be changed to match what eclipse wants 

        % now estimate how the radiation intensity will drop as it moves through the phantom 

(Beer-Lambert Law) 
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        TF(depth,z-ceil(3.5*numel(infos)/10)+1) = TF(1,z-ceil(3.5*numel(infos)/10)+1) * 

exp((-attenuation_const*depth/dist_scaling)); % the scaling factor will also be changed 

    end 

    n = n + 1; % slice counter 

end  

  

tot = floor(6.5*numel(infos)/10) - ceil(3.5*numel(infos)/10); 

for z = ceil(3.5*numel(infos)/10):floor(6.5*numel(infos)/10) % this one is for the alghufali 

method 

    substack = stack(:,:,z); 

    substack(mask) = 0; % apply mask on entire stack 

    substack = bwareaopen(substack, 100); % remove small things from the image one 

last time 

  

    ellipse = regionprops(substack,{'MajorAxisLength', 'MinorAxisLength', 'Orientation', 

'Centroid'}); % extract the seperation and the radius 

     

    sep(n) = ellipse(1).MajorAxisLength*sf/10.0; 

    rad(n) = ellipse(1).MinorAxisLength*sf/10.0; 

     

    n = n + 1; % slice counter 

end    
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% tot = floor(6.5*numel(infos)/10) - ceil(3.5*numel(infos)/10); 

  

avg_sep_sup = mean(sep(1:floor(tot/3))); 

avg_rad_sup = mean(rad(1:floor(tot/3))); 

  

avg_sep_mid = mean(sep(ceil(tot/3):floor(2*tot/3))); 

avg_rad_mid = mean(rad(ceil(tot/3):floor(2*tot/3))); 

  

avg_sep_inf = mean(sep(ceil(2*tot/3):end)); 

avg_rad_inf = mean(rad(ceil(2*tot/3):end)); 

  

n = 1; 

for z = ceil(3.5*numel(infos)/10):floor(6.5*numel(infos)/10) 

    if z < ceil(3.5*numel(infos)/10) + floor(tot/3) % superior most third 

        TF(1,n) = 0.753 + 0.006*avg_rad_sup - 0.005*avg_sep_sup; % for a 6x beam 

        for depth = 2:total % splitting up the fluence map into 100 samples, this can and 

probably will have to be changed to match what eclipse wants 

        % now estimate how the radiation intensity will drop as it moves through the phantom 

(Beer-Lambert Law) 

            TF(depth,n) = TF(1,n) * exp((-attenuation_const*depth/dist_scaling)); % the 

scaling factor will also be changed 

        end 
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%         TF(1,z-ceil(3.5*numel(infos)/10)+1) = 0.8878 + 0.0061*avg_rad_sup - 

0.0068*avg_sep_sup; % for a 23x beam 

%         for depth = 2:total % splitting up the fluence map into 100 samples, this can and 

probably will have to be changed to match what eclipse wants 

%             % now estimate how the radiation intensity will drop as it moves through the 

phantom (Beer-Lambert Law) 

%             TF(depth,z-ceil(3.5*numel(infos)/10)+1) = TF(1,z-ceil(3.5*numel(infos)/10)+1) 

* exp((-attenuation_const*depth/dist_scaling)); % the scaling factor will also be changed 

%         end 

     

    elseif (z >= ceil(3.5*numel(infos)/10) + floor(tot/3)) && (z < ceil(3.5*numel(infos)/10) + 

floor(2*tot/3)) % middle third 

        TF(1,n) = 0.753 + 0.006*avg_rad_mid - 0.005*avg_sep_mid; % for a 6x beam 

        for depth = 2:total % splitting up the fluence map into 100 samples, this can and 

probably will have to be changed to match what eclipse wants 

        % now estimate how the radiation intensity will drop as it moves through the phantom 

(Beer-Lambert Law) 

            TF(depth,n) = TF(1,n) * exp((-attenuation_const*depth/dist_scaling)); % the 

scaling factor will also be changed 

        end 

         

%         TF(1,z-ceil(3.5*numel(infos)/10)+1) = 0.8878 + 0.0061*avg_rad_mid - 

0.0068*avg_sep_mid; % for a 23x beam 



www.manaraa.com

82 | P a g e  
 

%         for depth = 2:total % splitting up the fluence map into 100 samples, this can and 

probably will have to be changed to match what eclipse wants 

%             % now estimate how the radiation intensity will drop as it moves through the 

phantom (Beer-Lambert Law) 

%             TF(depth,z-ceil(3.5*numel(infos)/10)+1) = TF(1,z-ceil(3.5*numel(infos)/10)+1) 

* exp((-attenuation_const*depth/dist_scaling)); % the scaling factor will also be changed 

%         end 

         

    else % inferior most third 

        TF(1,n) = 0.753 + 0.006*avg_rad_inf - 0.005*avg_sep_inf; % for a 6x beam 

        for depth = 2:total % splitting up the fluence map into 100 samples, this can and 

probably will have to be changed to match what eclipse wants 

        % now estimate how the radiation intensity will drop as it moves through the phantom 

(Beer-Lambert Law) 

            TF(depth,n) = TF(1,n) * exp((-attenuation_const*depth/dist_scaling)); % the 

scaling factor will also be changed 

        end 

         

%         TF(1,z-ceil(3.5*numel(infos)/10)+1) = 0.8878 + 0.0061*avg_rad_inf - 

0.0068*avg_sep_inf; % for a 23x beam 

%         for depth = 2:total % splitting up the fluence map into 100 samples, this can and 

probably will have to be changed to match what eclipse wants 
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%             % now estimate how the radiation intensity will drop as it moves through the 

phantom (Beer-Lambert Law) 

%             TF(depth,z-ceil(3.5*numel(infos)/10)+1) = TF(1,z-ceil(3.5*numel(infos)/10)+1) 

* exp((-attenuation_const*depth/dist_scaling)); % the scaling factor will also be changed 

%         end 

    end 

    n = n + 1; % slice counter 

end 

  

avg_sep = mean(sep); 

avg_rad = mean(rad); 

  

n = 1; 

for z = ceil(3.5*numel(infos)/10):floor(6.5*numel(infos)/10) 

     

    TF(1,n) = 0.753 + 0.006*avg_rad - 0.005*avg_sep; % for a 6x beam 

    for depth = 2:total % splitting up the fluence map into 100 samples, this can and 

probably will have to be changed to match what eclipse wants 

       % now estimate how the radiation intensity will drop as it moves through the phantom 

(Beer-Lambert Law) 

        TF(depth,n) = TF(1,n) * exp((-attenuation_const*depth/dist_scaling)); % the scaling 

factor will also be changed 

    end 
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    n = n + 1; % slice counter 

end 

  

% pass the vectors through a median filter, we can assume no huge changes from slice 

to slice in the size/shape 

sep_med = medfilt1(sep, 7); 

rad_med = medfilt1(rad, 7); 

TPD_med = medfilt1(TPD, 7); 

  

% plot of the breast separation and radius estimation slice by slice 

% figure 

% plot(sep, 'Color', 'k') 

% xlabel('Axial slice number') 

% ylabel('Breast separation (cm)') 

%  

% figure 

% plot(rad, 'Color', 'k') 

% xlabel('Axial slice number') 

% ylabel('Breast radius (cm)') 

%  

% figure 

% plot(TPD, 'Color', 'k') 
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% xlabel('Axial slice number') 

% ylabel('Optimal TPD') 

  

figure 

plot(sep_med, 'Color', 'k') 

xlabel('Axial slice number') 

ylabel('Breast separation (cm)') 

  

figure 

plot(rad_med, 'Color', 'k') 

xlabel('Axial slice number') 

ylabel('Breast radius (cm)') 

  

TPD_alf = zeros(1,n-1); 

TPD_alf(1:20) = mean(TPD(1:20)); 

TPD_alf(21:40) = mean(TPD(21:40)); 

TPD_alf(41:n-1) = mean(TPD(41:n-1)); 

  

TPD_const = zeros(1,n-1); 

TPD_const(:) = 30; 

  

figure 

hold on; 
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plot(TPD_med, 'Color', 'k') 

plot(TPD_alf, 'Color', 'b') 

plot(TPD_const, 'Color', 'g') 

xlabel('Axial slice number') 

ylabel('Optimal TPD (%)') 

legend('Continuous model', '3-region breast model', 'Single TPD') 

hold off; 

  

figure 

plot(TF(1,:), 'Color', 'k') 

xlabel('Axial slice number') 

ylabel('Surface Fluence') 

% figure, imagesc(TF); 
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Appendix A.3 – Flow Chart for Project 

 

 

Appendix A.4 – Flow Chart for Algorithm 
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